
Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 1 / 25

CSE 250
Lecture 25
AVL Trees

A CAT Tree

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 2 / 25

BST Operation Costs

Operation Runtime

find

insert

remove

O(d)

O(d)

O(d)

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 3 / 25

Tree Depth vs Size

A

B C

D E F G

d = O(log(n))

A
B

C
D

E
F

G

d = O(n)

height(left) ≈ height(right) height(left) height(right)≪

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 4 / 25

“Balanced” Trees
● Faster search: Want height(left) ≈ height(right)

– Make it more precise: |height(left) - height(right)| ≤ 1
– (left, right height differ by at most 1)

● Question: How do we keep the tree balanced?
– Option 1: Keep left/right subtrees within +/- 1 of each other

● Add a field to track the “imbalance factor”
– Option 2: Ensure leaves are at a minimum depth of d / 2

● Add a designation marking each node as red or black

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 5 / 25

AVL Trees

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 6 / 25

AVL Trees
● An AVL tree (Adelson-Velsky and Landis) is a BST where every

subtree is “depth-balanced”
– (remember tree depth = root height)
– |height(left child) - height(right child)| ≤ 1

● define balance(v) = height(v.right) - height(v.left)
– Maintain balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → “v is balanced”
● balance(v) = -1 → “v is left-heavy”
● balance(v) = 1 → “v is right-heavy”

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 7 / 25

AVL Trees
● Goal: AVL tree property maintains a nearly balanced tree

– Depth balance forces a maximum possible depth d ≪ n
● (d ≪ n means d ≤ c log(n) for some constant c > 0)

● Proof idea: An AVL tree with depth d has “enough” nodes

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 8 / 25

AVL Trees
● Let minNodes(d) be the minimum number of nodes in an AVL

tree of depth d

1

minNodes(0) = 1

1

minNodes(1) = 2

2

minNodes(2) = 4

1
2

3
4

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 9 / 25

AVL Trees

1

h =
n-2 h =

n-1

For any tree of depth n: at least one subtree
needs to have
a depth of n - 1

subtrees must be balanced, so
the other subtree needs to have
a depth of at least n-2

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 10 / 25

Enough Nodes?
● For d > 1

– minNodes(d) = 1 + minNodes(d-1) + minNodes(d-2)
– This is the Fibbonacci Sequence!

● minNodes(d) = Fib(d+3)-1
● Fib(0), Fib(1), Fib(2), ... = 0, 1, 1, 2, 3, 5, 8, ...

– minNodes(d) = Ω(1.5d)

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 11 / 25

Enough Nodes?
● minNodes(d) = Ω(1.5d)

constant

A tree with n nodes and the AVL
constraint has logarithmic depth in n

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 12 / 25

Enforcing the AVL Constraint
● Computing balance() on the fly is expensive

– balance calls height() twice
– Computing height requires visiting every node

● (linear in the size of the subtree)
● Idea: Store height of each node at the node

– Better idea: Store balance factor (only requires 2 bits)

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 13 / 25

Enforcing the AVL Constraint

class AVLNode[K, V](
 var _key: K,
 var _value: V,
 var _parent: Option[AVLNode[K,V]],
 var _left: AVLNode[K,V],
 var _right: AVLNode[K,V],
 var _isLeftHeavy: Boolean, // true if balance(this) == -1
 var _isRightHeavy: Boolean, // true if balance(this) == 1
)

maintaining _parent makes it possible to traverse up the tree
(helpful for rotations), but is not possible in an immutable tree.

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 14 / 25

Enforcing the AVL Constraint
● Left Rotation

– Before
● (A) root; balance(A) = +2 (too right heavy)
● (B) root.right; balance(B) = +1 (right heavy)

1) Left subtree of (B) becomes right subtree of (A).
2) (A) becomes left subtree of (B)
3) (B) becomes root
– After

● balance(A) = 0, balance(B) = 0

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 15 / 25

Enforcing the AVL Constraint

A

B

X Y Z

balance = +1

balance = +2

height = hheight = h-1height = h-1

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 16 / 25

Enforcing the AVL Constraint

A

B

X Y Z

height = hheight = h-1height = h-1

balance = 0

balance = 0

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 17 / 25

Enforcing the AVL Constraint
● Right-Left Rotation

– Before
● (A) root; balance(A) = +2 (too right heavy)
● (B) root.right; balance(B) = -1 (left heavy)
● (C) right.left.right

1) Left subtree of (C) becomes right subtree of (A).
2) Right subtree of (C) becomes left subtree of (B).
3) (A) becomes left subtree of (C)
4) (B) becomes right subtree of (C)
5) (C) becomes root

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 18 / 25

Enforcing the AVL Constraint
● After

– if (C)’s BF was originally 0
● (A) BF = 0; (B) BF = 0; (C) BF = 0

– if (C)’s BF was originally -1
● (A) BF = 0; (B) BF = +1; (C) BF = 0

– if (C)’s BF was originally +1
● (A) BF = -1; (B) BF = 0; (C) BF = 0

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 19 / 25

Enforcing the AVL Constraint

A

B

W X Z

C

Y

height = h height = hx height = hy height = h

balance = 0, +1 or -1

balance = -1

balance = +2

hx = hy = h
or
hx = h - 1; hy = h
or
hx = h; hy = h -1

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 20 / 25

Enforcing the AVL Constraint

A B

W X Z

C

Y

height = h height = hx height = hy height = h

hx = hy = h
or
hx = h - 1; hy = h
or
hx = h; hy = h - 1

balance = 0 or +1balance = 0 or -1

balance = 0

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 21 / 25

Enforcing the AVL Constraint
● Rotate Right

– Symmetric to rotate left
● Rotate Left-Right

– Symmetric to rotate right-left

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 22 / 25

Inserting Records
● Inserting Records

– Find insertion as in BST
– Set balance factor of new leaf to 0

● _isLeftHeavy = _isRightHeavy = false
– Trace path up to root, updating balance factor

● Rotate if balance factor off

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 23 / 25

Inserting Records
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit =
{
 var node = findInsertionPoint(key, root)
 node._key = key; node._value = value
 node._isLeftHeavy = node._isRightHeavy = false
 while(node._parent.isDefined){
 if(node._parent._left == node){
 if(node._parent._isRightHeavy){
 node._parent._isRightHeavy = false; return
 } else if(node._parent._isLeftHeavy) {
 if(node._isLeftHeavy){ node._parent.rotateRight() }
 else { node._parent.rotateLeftRight() }
 return
 } else {
 node._parent.isLeftHeavy = true
 }
 } else {
 /* symmetric to above */
 }
 node = node._parent
} }

O(d) = O(log(n))

O(d) = O(log(n)) loops

O(1) per loop

Total Runtime = O(log(n))

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 24 / 25

Removing Records
● Removing Records

– Remove the node
● Find the node containing the value as in BST

– If it doesn’t exist, return false
● If the node is a leaf, remove it
● If the node has one child, the child replaces the node
● If the node has two children

– copy smaller child value into node
– remove smaller child node

– Fix balance factors
● Inverse of insertion

Fall 2022 ©Oliver Kennedy, Andrew Hughes
The University at Buffalo, SUNY 25 / 25

Maintaining Balance
● Claim: Only the balance factors of ancestors are impacted

– The height of a node is only affected by its descendents
● Claim: Only one rotation will fix any remove/insert imbalance

– Insert/remove change the height by at most one
● Only log(n) rotations are required for any insert/remove

– Insert/remove are still log(n)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

