A CAT Tree —

CSE 250 Lecture 25

AVL Trees

©Oliver Kennedy, Andrew Hughes The University at Buffalo, SUNY

BST Operation Costs

Operation	Runtime
find	O(d)
insert	O(d)
remove	O(d)

Tree Depth vs Size

height(left) ≈ height(right)

d = O(log(n))

height(left) < height(right)

"Balanced" Trees

- Faster search: Want height(left) \approx height(right)
 - Make it more precise: $|height(left) height(right)| \le 1$
 - (left, right height differ by at most 1)
- **Question**: How do we keep the tree balanced?
 - Option 1: Keep left/right subtrees within +/- 1 of each other
 - Add a field to track the "imbalance factor"
 - Option 2: Ensure leaves are at a minimum depth of **d / 2**
 - Add a designation marking each node as red or black

- An AVL tree (<u>A</u>delson-<u>V</u>elsky and <u>L</u>andis) is a BST where every subtree is "depth-balanced"
 - (remember tree depth = root height)
 - $|\text{height}(\text{left child}) \text{height}(\text{right child})| \le 1$
- define balance(v) = height(v.right) height(v.left)
 - Maintain balance(v) \in { -1, 0, 1 }
 - balance(v) = $0 \rightarrow$ "v is balanced"
 - balance(v) = $-1 \rightarrow$ "v is left-heavy"
 - balance(v) = $1 \rightarrow$ "v is right-heavy"

- **Goal**: AVL tree property maintains a nearly balanced tree
 - Depth balance forces a maximum possible depth d \ll n
 - (d \ll n means d \leq c log(n) for some constant c > 0)
- **Proof idea**: An AVL tree with depth d has "enough" nodes

 Let minNodes(d) be the minimum number of nodes in an AVL tree of depth d

minNodes(0) = 1

1

minNodes(1) = 2

minNodes(2) = 4

 $\min Nodes(n) = \mathbf{k}$

Enough Nodes?

- For d > 1
 - minNodes(d) = 1 + minNodes(d-1) + minNodes(d-2)
 - This is the Fibbonacci Sequence!
 - minNodes(d) = Fib(d+3)-1
 - Fib(0), Fib(1), Fib(2), ... = 0, 1, 1, 2, 3, 5, 8, ...
 - minNodes(d) = $\Omega(1.5^d)$

Enough Nodes?

- minNodes(d) = $\Omega(1.5^d)$
- $n \ge c1.5^d$

$$\frac{n}{c} \ge 1.5^d$$

$$\log_2\left(\frac{n}{c}\right) \ge \log_2\left(1.5^d\right)$$

$$\log_2\left(\frac{n}{c}\right) \ge \log_{1.5}(1.5^d)\log_2 1.5$$

$$\log_2 \left(\frac{n}{c}\right) \ge d \log_2(1.5)$$
$$\frac{\log_2 \left(\frac{n}{c}\right)}{\log_2(1.5)} \ge d$$
$$\frac{\log_2 (n)}{\log_2(1.5)} \xrightarrow{\log_2(q)} \log_2(q) \ge d$$
$$O\left(\log_2(n)\right) \ge d$$

A tree with n nodes and the AVL constraint has logarithmic depth in n

Fall 2022

©Oliver Kennedy, Andrew Hughes The University at Buffalo, SUNY

11/25

- Computing balance() on the fly is expensive
 - balance calls height() twice
 - Computing height requires visiting every node
 - (linear in the size of the subtree)
- Idea: Store height of each node at the node
 - **Better idea**: Store balance factor (only requires 2 bits)

```
maintaining parent makes it possible to traverse up the tree
                               (helpful for rotations), but is not possible in an immutable tree.
class AVLNode[K, V](
  var _key: K,
   var value: \mathcal{N},
   var parent: Option[AVLNode[K,V]],
   var left: AVLNode[K,V],
   var right: AVLNode[K,V],
   var isLeftHeavy: Boolean, // true if balance(this) == -1
   var isRightHeavy: Boolean, // true if balance(this) == 1
                  \begin{split} & \bigwedge_{balance(n)} = \begin{cases} -1 & \text{if n.\_isLeftHeavy} = \mathbf{T} \\ +1 & \text{if n.\_isRightHeavy} = \mathbf{T} \\ 0 & \text{otherwise} \end{cases} \end{split}
```

- Left Rotation
 - Before
 - (A) root; balance(A) = +2 (too right heavy)
 - **(B)** root.right; balance(**B**) = +1 (right heavy)
 - 1) Left subtree of (B) becomes right subtree of (A).
 - 2) (A) becomes left subtree of (B)
 - 3) (B) becomes root
 - After
 - balance(**A**) = 0, balance(**B**) = 0

- Right-Left Rotation
 - Before
 - (A) root; balance(A) = +2 (too right heavy)
 - **(B)** root.right; balance(**B**) = -1 (left heavy)
 - (C) right.left.right
 - 1) Left subtree of (C) becomes right subtree of (A).
 - 2) Right subtree of (C) becomes left subtree of (B).
 - 3) (A) becomes left subtree of (C)
 - 4) (B) becomes right subtree of (C)
 - 5) (C) becomes root

- After
 - if (C)'s BF was originally 0
 - (A) BF = 0; (B) BF = 0; (C) BF = 0
 - if (C)'s BF was originally -1
 - (A) BF = 0; (B) BF = +1; (C) BF = 0
 - if (C)'s BF was originally +1
 - (A) BF = -1; (B) BF = 0; (C) BF = 0

©Oliver Kennedy, Andrew Hughes The University at Buffalo, SUNY

©Oliver Kennedy, Andrew Hughes The University at Buffalo, SUNY

- Rotate Right
 - Symmetric to rotate left
- Rotate Left-Right
 - Symmetric to rotate right-left

Inserting Records

- Inserting Records
 - Find insertion as in BST
 - Set balance factor of new leaf to 0
 - _isLeftHeavy = _isRightHeavy = false
 - Trace path up to root, updating balance factor
 - Rotate if balance factor off

Inserting Records

```
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit =
{
                                                             O(d) = O(log(n))
  var node = findInsertionPoint(key, root)-
  node. key = key; node. value = value
  node. isLeftHeavy = node. isRightHeavy = false
 while(node. parent.isDefined){-
                                                             O(d) = O(log(n)) loops
    if(node. parent. left == node) { ``
      if(node. parent. isRightHeavy){
        node. parent. isRightHeavy = false; return
      } else if(node. parent. isLeftHeavy) {
                                                              O(1) per loop
        if(node._isLeftHeavy){ node. parent.rotateRight()
        else { node. parent.rotateLeftRight() }
        return
      } else {
        node. parent.isLeftHeavy = true
    } else {
      /* symmetric to above */
    node = node. parent
                                                Total Runtime = O(\log(n))
} }
```

Removing Records

- Removing Records
 - Remove the node
 - Find the node containing the value as in BST
 - If it doesn't exist, return false
 - If the node is a leaf, remove it
 - If the node has one child, the child replaces the node
 - If the node has two children
 - copy smaller child value into node
 - remove smaller child node
 - Fix balance factors
 - Inverse of insertion

Maintaining Balance

- **Claim**: Only the balance factors of ancestors are impacted
 - The height of a node is only affected by its descendents
- **Claim**: Only one rotation will fix any remove/insert imbalance
 - Insert/remove change the height by at most one
- Only log(n) rotations are required for any insert/remove
 - Insert/remove are still log(n)