CSE 250 Lecture 26-27
 AVL Trees \& RB Trees

BST Operation Costs

Operation	Runtime
find	$\mathrm{O}(\mathrm{d})$
insert	$\mathrm{O}(d)$
remove	$\mathrm{O}(d)$

Enforcing the AVL Constraint

maintaining _parent makes it possible to traverse up the tree

```
(helpful for rotations), but is not possible in an immutable tree.
class AVLNode[K, y](
    var _key: K,
    var _value: \,
    var _parent: Option[AVLNode[K,V]],
    var _left: AVLNode[K,V],
    var _right: AVLNode[K,V],
    var _isLeftHeavy: Boolean, // true if balance(this) == -1
    var _isRightHeavy: Boolean, // true if balance(this) == 1
```

balance $(n)= \begin{cases}-1 & \text { if } \mathrm{n} . \text { _isLeftHeavy }=\mathbf{T} \\ +1 & \text { if } \mathrm{n} . \text { _isRightHeavy }=\mathbf{T} \\ 0 & \text { otherwise }\end{cases}$

Fixing Unbalanced Trees

- Assumptions:
- There is one subtree with exactly one unbalanced node
- It has a balance factor of ± 2

Fixing Unbalanced Trees

Fixing Unbalanced Trees

Case 3.1:

Fixing Unbalanced Trees

Case 3.2:

Fixing Unbalanced Trees

Case 3.3:

Enforcing the AVL Constraint

- Left Rotation
- Before
- (A) root; balance $(\mathbf{A})=+2$ (too right heavy)
- (B) root.right; balance(B) $=+1$ (right heavy)

1) Left subtree of (\mathbf{B}) becomes right subtree of (\mathbf{A}).
2) (A) becomes left subtree of (B)
3) (B) becomes root

- After
- $\operatorname{balance}(\mathbf{A})=0$, balance $(\mathbf{B})=0$

Enforcing the AVL Constraint

- Right-Left Rotation
- Before
- (A) root; balance $(\mathbf{A})=+2$ (too right heavy)
- (B) root.right; balance(B) $=-1$ (left heavy)
- (C) right.left.right

1) Left subtree of (\mathbf{C}) becomes right subtree of (\mathbf{A}).
2) Right subtree of (C) becomes left subtree of (B).
3) (A) becomes left subtree of (C)
4) (B) becomes right subtree of (C)
5) (C) becomes root

Enforcing the AVL Constraint

- After
- if (C)'s BF was originally 0
- (A) $B F=0$; ($\mathbf{B}) B F=0$; (C) $B F=0$
- if (C)'s BF was originally -1
- (A) $B F=0 ;(B) B F=+1 ;(C) B F=0$
- if (C)'s BF was originally +1
- (A) $B F=-1$; ($\mathbf{B}) B F=0 ;(C) B F=0$

Enforcing the AVL Constraint

- Rotate Right
- Symmetric to rotate left
- Rotate Left-Right
- Symmetric to rotate right-left

Inserting Records

- Inserting Records
- Find insertion as in BST
- Set balance factor of new leaf to 0
- _isLeftHeavy = _isRightHeavy = false
- Trace path up to root, updating balance factor
- Rotate if balance factor off

Inserting Records

```
def insert[K, V](key: K, value: V, root: AVLNode[K, V]): Unit =
{
    var node = findInsertionPoint(key, root)
        O(d) = O(log(n))
    node._key = key; node.,value = value
    node._isLeftHeavy = node._isRightHeavy = false
    while(node._parent.isDefined){
        {
        if(node. parent. left == node){
            if(node._parent._isRightHeavy){
                node._parent._isRightHeavy = false; return
            } else if(node._parent._isLeftHeavy) {
                if(node._isLef
                else { node._parent.rotateLeftRight() }
                return
            } else {
                node._parent.isLeftHeavy = true
            }
        } else {
            /* symmetric to above */
        }
        node = node._parent
} }
                                    Total Runtime = O(log(n))
```


Removing Records

- Removing Records
- Remove the node
- Find the node containing the value as in BST
- If it doesn't exist, return false
- If the node is a leaf, remove it
- If the node has one child, the child replaces the node
- If the node has two children
- copy smaller child value into node
- remove smaller child node
- Fix balance factors
- Inverse of insertion

Maintaining Balance

- Claim: Only the balance factors of ancestors are impacted
- The height of a node is only affected by its descendents
- Claim: Only one rotation will fix any remove/insert imbalance
- Insert/remove change the height by at most one
- Only $\log (\mathrm{n})$ rotations are required for any insert/remove
- Insert/remove are still log(n)

Maintaining Balance

- Enforcing height-balance is too strict
- May require "unnecessary" rotations
- Weaker restriction:
- Balance the depth of EmptyTree nodes
- If a, b are EmptyTree nodes:
- depth $(a) \geq$ (depth $(b) \div 2)$
or
- depth $(\mathrm{b}) \geq(\operatorname{depth}(\mathrm{a}) \div 2)$

Balancing Empty Node Depth

Balancing Empty Node Depth

Balancing Empty Node Depth

Red-Black Trees

- Color each node red or black

1) \# of black nodes from each empty to root must be identical
2) Parent of a red node must be black

- On Insertion (or deletion)
- Inserted node is red (won't change \# of black nodes)
- "Repair" violations of rule 2 by rotating or recoloring
- Repairs guarantee rule 1 is preserved

Red-Black Trees

Red-Black Trees

Repair A

Red-Black Trees

Case 1: All Good!

Red-Black Trees

Case 1b: All Good!

Red-Black Trees

Case 1b: All Good!

Red-Black Trees

Problem!

Red-Black Trees

Case 2: Split Black Node

Red-Black Trees

Case 2: Split Black Node

Red-Black Trees

Case 2: Split Black Node

Red-Black Trees

Case 3: Rotate B, C

Red-Black Trees

Case 3: Rotate B, C

Red-Black Trees

Case 3: Rotate B, C

Red-Black Trees

Case 4: Rotate A, B \rightarrow B, C

Red-Black Trees

Case 4: Rotate A, B \rightarrow B, C

Now identical to case 3

Red-Black Trees

- Each insertion creates at most one red-red parent-child conflict
- O(1) time to recolor/rotate to repair color
- May create a red-red conflict in grandparent
- Up to $d / 2=O(\log (n))$ repairs required
- Each deletion removes at most one black node
- O(1) time to recolor/rotate to preserve black-depth
- May require recoloring (grand-)parent from black to red
- Up to d $=O(\log (n))$ repairs required

