A CAT Tree

CSE 250
 Lecture 27

Red-Black Trees

BST Operation Costs

Operation	Runtime
find	$\mathrm{O}(\mathrm{d})$
insert	$\mathrm{O}(d)$
remove	$\mathrm{O}(d)$

Red-Black Trees

- Color each node red or black

1) \# of black nodes from each empty to root must be identical
2) Parent of a red node must be black

- On Insertion (or deletion)
- Inserted node is red (won't change \# of black nodes)
- "Repair" violations of rule 2 by rotating or recoloring
- Repairs guarantee rule 1 is preserved

Red-Black Trees

- \# of black nodes on a path from root to leaf is the same
- Call this number (for a given tree) B
- Each red node must have a black parent
- What's the longest possible path from the root to a leaf? 2B (Black, Red, Black, Red, Black, Red, ...)
- What's the shortest possible path from the root to a leaf? B (Black, Black, Black, ...)

Balancing Empty Node Depth

Red-Black Trees

Repair A

Red-Black Trees

Case 1: All Good!

Red-Black Trees

Case 1b: All Good!

Red-Black Trees

Case 1b: All Good!

Red-Black Trees

Problem!

Red-Black Trees

Case 2: Split Black Node

Red-Black Trees

Case 2: Split Black Node

Red-Black Trees

Case 2: Split Black Node

Red-Black Trees

Case 3: Rotate B, C

Red-Black Trees

Case 3: Rotate B, C

Red-Black Trees

Case 3: Rotate B, C

Red-Black Trees

Case 4: Rotate A, B $\rightarrow B, C$

Red-Black Trees

Case 4: Rotate A, B $\rightarrow B, C$

Now identical to case 3

Red/Black Trees

- Case 1 (Parent of Red is Black) O(1)
- Done!
- Case 1.a (Root is Red) O(1)
- Recolparent Black $\mathbf{O}(\mathbf{1})+\mathbf{O}(\boldsymbol{\operatorname { l o g }}(\mathbf{n}) * \mathbf{O}(\mathbf{1}))$
- Case 2 (Parent is Red; Aunt is Red) -O(1)- fix grandparent
- Recolor Grandparent Red, Recolor parent and aunt Black
- Grandparent is now red; Repeat check there
- Case $\mathbf{3}$ (Left child of Red Parent; Aunt is Black) O(1)
- Rotate Grantparent Right; Swap rotated node colors
- Case 4 (Right child of Red Parent; Aunt is Black) O(1)
- Rotate Parent Left; Continue with Case 3

Insertion

- Find the insertion point (as in a BST) $\quad \mathbf{O}(\mathbf{d})=\mathbf{O}(\mathbf{l o g}(\mathbf{n}))$
- Insert the node as red

O(1)

- Preserves the black depth
- Fix colors (if needed)

O($\log (\mathbf{n})$)

- Preserves the black depth (or adds 1 at root)

Hash Tables

Finding Items: Sequences

- Is it element 1 ?
- If so, return, else...
- Is it element 2?
- If so, return, else...
- Is it element 3?
- If so, return, else...
- etc...

Finding Items: Sorted Sequences

- How does it compare to element $1 / 2 \mathrm{n}$?
- If equal, return
- If lesser, how does it compare to element $1 / 4 n$?
- If equal return
- If lesser, etc...
- If greater, etc...
- If greater, how does it compare to element $3 / 4 \mathrm{n}$?
- etc...

Finding Items: Trees

- How does it compare to root?
- If equal, return
- If lesser, how does it compare to left child?
- If equal return
- If lesser, etc...
- If greater, etc...
- If greater, how does it compare to right child?
- etc...

Finding Items

The most expensive part of finding records is finding them. (i.e., where is the record located?)

So... skip the search

Finding the item

Alternative Idea: Assign Bins

- Create an array of size N
- Pick an $\mathrm{O}(1)$ function to assign each record a number in $[0, N)$
- First letter of name $\rightarrow[0,26$)

Alternative Idea: Assign Bins

Alternative Idea: Assign Bins

- Pros
- O(1) Insert
- O(1) Find
- O(1) Remove
- Cons
- Wasted Space (Only 3/26 slots used)
- Duplication (What about Aramis?)

Other Functions

- Identity Function: (x: Int) => x
- Problem: Can return values over N
- Solution: Cap return value by Modulus with N
- (x: Int) => x \% N

Other Functions

Other Functions

- Identity Function: (x: Int) => x \%N
- Linear Function: (x: Int) => ($x^{*} a+b$) \%N (for some $\left.a, b\right)$
- .. or Quadratic: (x: Int) => (($\left.x^{*} a+b\right)^{*} x+c$) \%N (for a, b, c)

Other Functions

- Ideal: Function assigns every record to a unique position
- If $\mathrm{n}=\mathrm{N}$ records, every array position is used
- No conflicted assignment
- Examples
- Unique Record IDs from [0, N) (like UBIT \#s)
- ... no deletions
- Cumulative Distribution Functions (CDFs)
- ... hard to encode

Almost Ideal...

- A function a that evenly distributes records
- O(1) means we can't compare against other records.
- Not random: Same input = same output
- Pseudorandom: Every position has the same probability
- (for a given record)
- For n records, the chance of first conflict is n / N
- Expect $\sqrt{ } \mathrm{N}$ insertions before the first conflict

