
Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 1 / 46

CSE 250
Lecture 29
Hash Tables

Your hash bucket was tasty

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 2 / 46

Alternative Idea: Assign Buckets
● Pros

– O(1) Insert
– O(1) Find
– O(1) Remove

● Cons
– Wasted Space (Only 3/26 slots used)
– Duplication (What about Aramis?)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 3 / 46

Bucket-Based Organization
● Wasted Space

– Not ideal, but not wrong
– O(1) access time might be worth it!
– Also depends on choice of function (more on this later)

● Duplication
– We need to deal with duplicates!

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 4 / 46

Buckets + Linked Lists

A B C D Y ZPAthos D’Artagnan Porthos

∅ ∅ ∅ ∅ ∅ ∅∅

∅

Aramis

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 5 / 46

Picking a Lookup Function
● Desirable Features for h(x)

– Fast
● needs to be O(1)

– “Unique”
● As few duplicate bins as possible

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 46

Picking a Lookup Function

Buckets

E
le

m
en

ts
/B

uc
ke

t Almost Ideal!
... and achievable

apply(k) is something like O(1)?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 7 / 46

Picking a Lookup Function
● Wacky Idea: Have h(x) return a random value in [0, N)

– Random.nextInt % N

(Yes, it makes apply impossible, but bear with me)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 8 / 46

Hash Functions
● Examples

– SHA256 ← used by GIT
– MD5, BCRYPT ← used by unix login, apt
– MurmurHash3 ← used by Scala

● hash(x) is pseudorandom
1) hash(x) ~ uniform random value in [0, INT_MAX)
2) hash(x) always returns the same value
3) hash(x) uncorrelated with hash(y) for x ≠ y

hash(x) is deterministic, but statistically random

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 9 / 46

Hash Functions
● Not-so-Wacky Idea: Use hash function to pick bucket

– h(x) = hash(x) % N
● Pseudorandom (“evenly distributed” over N)
● Deterministic (same value every time)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 10 / 46

Expectation
● X is a random variable

– X = 1 with p = 0.2
– X = 2 with p = 0.7
– X = 3 with p = 0.1

● E[X] is the “expectation of X”
– The average of X taken over all possibilities (weighted by p)
– E[X] = (1 x 0.2) + (2 x 0.7) + (3 x 0.1)

● = 0.2 + 1.4 + 0.3 = 1.9

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 11 / 46

Expected Size of a Bucket
● After n insertions, how many records can we “expect” in the

average bucket?
● Let Xj be the number of records in bucket j

– After n insertions, 0 ≤ Xj ≤ n
● Xj = 0 with p = ???
● Xj = 1 with p = ???
● ...
● Xj = n with p = ???

what is p?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 12 / 46

Expected Size of a Bucket
● Assume N buckets
● Start with 1 insertion (n = 1)

– Xj = 0 with p = (N-1)/N
– Xj = 1 with p = 1/N

● E[X] = (0 x (N-1)/N) + (1 x 1/N) = 1/N

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 13 / 46

Expected Size of a Bucket
● For n insertions, we repeat the process (n Xjs)

– X1,j, X2,j, ..., Xn,j

● E[Σi Xi,j] = E[X1,j] + ... + E[Xn,j]
– = 1/N + 1/N + ... + 1/N

– = n/N

● The expected runtime of insert, apply, remove is O(n/N)
● The worst-case runtime of insert, apply, remove is O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 14 / 46

Using Hash Functions
● hash(x: Int): Int

– What about strings?

def hashString(str: String): Int = {
 var accumulator: Int = SEED
 for(character <- str){
 accumulator = hash(accumulator * character.toInt)
 }
 return accumulator
}

call hash() str.length times

Arbitrary starting constant
 (hash(“”))

(simplified, don’t actually do exactly this)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 15 / 46

Hash Functions
● hash(x: Object): Int

– In Java/Scala, call x.hashCode

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 16 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 17 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 18 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 19 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 20 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 21 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 22 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 23 / 46

Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 24 / 46

Iterating over a hash table
● Runtime

– Visit every hash bucket
● O(N)

– Visit every element in every bucket
● O(n)

= O(N + n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 25 / 46

Hash Functions + Buckets

Everything is:

Idea: Make α a constant

Let’s call the load factor.

Fix an and start requiring that

What happens when the user inserts n = N x αmax + 1 records ?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 26 / 46

Rehashing
● Resize the array from Nold to Nnew.

– Element x moves from hash(x) % Nold to hash(x) % Nnew

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 27 / 46

Rehashing

0 1 2 3 54

hash(x) = 1029

0 1 2 3 54 6 7

X1029 % 6 = 3

1029 % 8 = 5

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 28 / 46

Rehashing
● Resize the array from Nold to Nnew.

– Element x moves from hash(x) % Nold to hash(x) % Nnew

● Runtime?
– Allocate new array: O(1)
– Visit every hash bucket: O(Nold)
– Hash and copy each element to the new array: O(n)
– Free the old array: O(1)
– O(1) + O(Nold) + O(n) + O(1) = O(Nold+n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 29 / 46

Rehashing
● Whenever α > αmax, rehash to double size

– Contrast with ArrayBuffer
● Starting with N buckets, after n insertions..

– Rehash at n1 = αmax x N: From N to 2N Buckets
– Rehash at n2 = αmax x 2N: From 2N to 4N Buckets
– Rehash at n3 = αmax x 4N: From 4N to 8N Buckets
– ...
– Rehash at nj = αmax x 2jN: From 2j-1N to 2jN Buckets

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 30 / 46

Number of Rehashes

n = 2j αmax

2j =
n
αmax

j = log()
n
αmax

j = log(n) - log(αmax)

j ≤ log(n)

With n insertions...

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 31 / 46

Total Work

Total work after n insertions is no more than...

The i-th rehashing:

Rehashes required:

 Work per insertion:
(amortized cost)

≤ log(n)

O(2i N)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 32 / 46

Recap: So Far
● Current Design: Hash Table with Chaining

– Array of Buckets
– Each bucket is the head of a linked list (a “chain”)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 33 / 46

Recap: apply(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record: O(α cequality)
– Total: O(chash + α cequality) ≈ O(1 + 1) = O(1)

● Worst-Case Cost
– Find the record: O(n cequality)
– Total: O(chash + n cequality) ≈ O(1 + n) = O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 34 / 46

Recap: remove(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record: O(α cequality)
– Remove from linked-list: O(1)
– Total: O(chash + α cequality +1) ≈ O(1 + 1 + 1) = O(1)

● Worst-Case Cost
– Find the record: O(n cequality)
– Total: O(chash + n cequality +1) ≈ O(1 + n + 1) = O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 35 / 46

Recap: insert(x)
● Expected Cost

– Find the bucket: O(chash)
– Remove the key, if present: O(α cequality + 1)
– Prepend to linked-list: O(1)
– Total: O(chash + α cequality +1+1) ≈ O(1 + 1 + 2) = O(1)

● Worst-Case Cost
– Remove the key, if present: O(n cequality + 1)
– Total: O(chash + n cequality +1+1) ≈ O(1 + n + 2) = O(n)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 36 / 46

Variations
● Hash Table with Chaining

– ... but re-use empty hash buckets instead of chaining
● Hash Table with Open Addressing
● Cuckoo Hashing (Double Hashing)

– ... but avoid bursty rehashing costs
● Dynamic Hashing

– ... but avoid O(N) iteration cost
● Linked Hash Table

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 37 / 46

Chaining

0 1 2 3 54 6 7BA
C

D
hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

E

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 38 / 46

Open Addressing

0 1 2 3 54 6 7BA C D E

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

!

!

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 39 / 46

Open Addressing

0 1 2 3 54 6 7

apply(A)

1

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 40 / 46

Open Addressing

0 1 2 3 54 6 7

apply(C)

1 2

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 41 / 46

Open Addressing

0 1 2 3 54 6 7

apply(E)

1 2 3

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 42 / 46

Open Addressing
● insert(X)

– While bucket hash(X)+i %N is occupied, i = i + 1
– Insert at bucket hash(X)+i %N

● apply(X)
– While bucket hash(X)+i %N is occupied

● If the element at bucket hash(X)+i %N is X, return it
● Otherwise i = i + 1

– Element not found

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 43 / 46

Open Addressing
● remove(X)

– While bucket hash(X)+i is occupied
● If the element at bucket hash(X)+i is X, remove it
● Otherwise i = i + 1

What about elements that were cascaded ?

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 44 / 46

Removals Under Open Addressing
● Check each element in a contiguous block, starting at hash(X)

– Move elements up
● Don’t move any element Y ahead of hash(Y)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 45 / 46

Open Addressing
● Linear Probing: Offset to hash(X)+ci for some constant c
● Quadratic Probing: Offset to hash(X)+ci2 for some constant c
● Follow Probing Strategy to find the next bucket

● Runtime Costs
– Chaining: Dominated by following chain
– Open Addressing: Dominated by probing

● With a low enough αmax, operations still O(1)

Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 46 / 46

Cuckoo Hashing
● Use two hash functions: hash1, hash2

– Each record is stored at one of the two
● insert(x)

– If both buckets are available: pick at random
– If one bucket is available: insert record there
– If neither bucket is available, pick one at random

● “Displace” the record there, move it to the other bucket
● Repeat displacement until an empty bucket is found

apply(x) and remove(x) is guaranteed O(1)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

