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CSE 250
Lecture 29
Hash Tables

Your hash bucket was tasty
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Alternative Idea: Assign Buckets
● Pros

– O(1) Insert
– O(1) Find
– O(1) Remove

● Cons
– Wasted Space (Only 3/26 slots used)
– Duplication (What about Aramis?)
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Bucket-Based Organization
● Wasted Space

– Not ideal, but not wrong
– O(1) access time might be worth it!
– Also depends on choice of function (more on this later)

● Duplication
– We need to deal with duplicates!
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Buckets + Linked Lists

A B C D Y ZP ......Athos D’Artagnan Porthos

∅ ∅ ∅ ∅ ∅ ∅∅ ......

∅

Aramis
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Picking a Lookup Function
● Desirable Features for h(x) 

– Fast
● needs to be O(1)

– “Unique”
● As few duplicate bins as possible



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 6 / 46

Picking a Lookup Function

Buckets

E
le

m
en

ts
/B

uc
ke

t Almost Ideal!
... and achievable

apply(k) is something like O(1)?
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Picking a Lookup Function
● Wacky Idea: Have h(x) return a random value in [0, N)

– Random.nextInt % N

(Yes, it makes apply impossible, but bear with me)
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Hash Functions
● Examples

– SHA256 ← used by GIT
– MD5, BCRYPT ← used by unix login, apt
– MurmurHash3 ← used by Scala

● hash(x) is pseudorandom
1) hash(x) ~ uniform random value in [0, INT_MAX)
2) hash(x) always returns the same value
3) hash(x) uncorrelated with hash(y) for x ≠ y

hash(x) is deterministic, but statistically random
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Hash Functions
● Not-so-Wacky Idea: Use hash function to pick bucket

– h(x) = hash(x) % N
● Pseudorandom (“evenly distributed” over N)
● Deterministic (same value every time)
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Expectation
● X is a random variable

– X = 1 with p = 0.2
– X = 2 with p = 0.7
– X = 3 with p = 0.1

● E[X] is the “expectation of X”
– The average of X taken over all possibilities (weighted by p)
– E[X] = (1 x 0.2) + (2 x 0.7) + (3 x 0.1) 

● = 0.2 + 1.4 + 0.3 = 1.9
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Expected Size of a Bucket
● After n insertions, how many records can we “expect” in the 

average bucket?
● Let Xj be the number of records in bucket j

– After n insertions, 0 ≤ Xj ≤ n
● Xj = 0 with p = ???
● Xj = 1 with p = ???
● ...
● Xj = n with p = ???

what is p?
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Expected Size of a Bucket
● Assume N buckets
● Start with 1 insertion (n = 1)

– Xj = 0 with p = (N-1)/N 
– Xj = 1 with p = 1/N

● E[X] = (0 x (N-1)/N) + (1 x 1/N) = 1/N
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Expected Size of a Bucket
● For n insertions, we repeat the process (n Xjs)

– X1,j, X2,j, ..., Xn,j

● E[ Σi Xi,j ] = E[ X1,j ] + ... + E[ Xn,j ]
– = 1/N + 1/N + ... + 1/N

– = n/N

● The expected runtime of insert, apply, remove is O(n/N)
● The worst-case runtime of insert, apply, remove is O(n)
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Using Hash Functions
● hash(x: Int): Int

– What about strings?

def hashString(str: String): Int = {
  var accumulator: Int = SEED
  for(character <- str){
    accumulator = hash(accumulator * character.toInt)
  }
  return accumulator
}

call hash() str.length times

Arbitrary starting constant
 ( hash(“”) )

(simplified, don’t actually do exactly this)
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Hash Functions
● hash(x: Object): Int

– In Java/Scala, call x.hashCode
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D E
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D E
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Iterating over a hash table

0 1 2 3 54 6 7BA
C

D E

A B C D E
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Iterating over a hash table
● Runtime

– Visit every hash bucket
● O(N)

– Visit every element in every bucket
● O(n)

= O(N + n)
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Hash Functions + Buckets

Everything is:

Idea: Make α a constant

Let’s call                    the load factor.

Fix an               and start requiring that 

What happens when the user inserts n = N x αmax + 1 records ?
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Rehashing
● Resize the array from Nold to Nnew.

– Element x moves from hash(x) % Nold to hash(x) % Nnew
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Rehashing

0 1 2 3 54

hash(x) = 1029

0 1 2 3 54 6 7

X1029 % 6 = 3

1029 % 8 = 5
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Rehashing
● Resize the array from Nold to Nnew.

– Element x moves from hash(x) % Nold to hash(x) % Nnew

● Runtime?
– Allocate new array: O(1)
– Visit every hash bucket: O(Nold)
– Hash and copy each element to the new array: O(n)
– Free the old array: O(1)
– O(1) + O(Nold) + O(n) + O(1) = O(Nold+n)
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Rehashing
● Whenever α > αmax, rehash to double size

– Contrast with ArrayBuffer
● Starting with N buckets, after n insertions..

– Rehash at n1 = αmax x N: From N to 2N Buckets
– Rehash at n2 = αmax x 2N: From 2N to 4N Buckets
– Rehash at n3 = αmax x 4N: From 4N to 8N Buckets
– ...
– Rehash at nj = αmax x 2jN: From 2j-1N to 2jN Buckets
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Number of Rehashes

n = 2j αmax

2j =
n
αmax

j = log(             )
n
αmax

j = log(n) - log(αmax)

j ≤ log(n)

With n insertions...
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Total Work

Total work after n insertions is no more than...

The i-th rehashing:

Rehashes required:

      Work per insertion:
(amortized cost)

≤ log(n)

O(2i N)



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 32 / 46

Recap: So Far
● Current Design: Hash Table with Chaining

– Array of Buckets
– Each bucket is the head of a linked list (a “chain”)
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Recap: apply(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record:  O(α cequality)
– Total: O(chash + α cequality) ≈ O(1 + 1) = O(1)

● Worst-Case Cost
– Find the record:  O(n cequality)
– Total: O(chash + n cequality) ≈ O(1 + n) = O(n)
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Recap: remove(x)
● Expected Cost

– Find the bucket: O(chash)
– Find the record:  O(α cequality)
– Remove from linked-list: O(1)
– Total: O(chash + α cequality +1) ≈ O(1 + 1 + 1) = O(1)

● Worst-Case Cost
– Find the record:  O(n cequality)
– Total: O(chash + n cequality +1) ≈ O(1 + n + 1) = O(n)
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Recap: insert(x)
● Expected Cost

– Find the bucket: O(chash)
– Remove the key, if present:  O(α cequality + 1)
– Prepend to linked-list: O(1)
– Total: O(chash + α cequality +1+1) ≈ O(1 + 1 + 2) = O(1)

● Worst-Case Cost
– Remove the key, if present:  O(n cequality + 1)
– Total: O(chash + n cequality +1+1) ≈ O(1 + n + 2) = O(n)
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Variations
● Hash Table with Chaining

– ... but re-use empty hash buckets instead of chaining
● Hash Table with Open Addressing
● Cuckoo Hashing (Double Hashing)

– ... but avoid bursty rehashing costs
● Dynamic Hashing

– ... but avoid O(N) iteration cost
● Linked Hash Table



Fall 2022 ©Oliver Kennedy, Eric Mikida, Andrew Hughes
The University at Buffalo, SUNY 37 / 46

Chaining

0 1 2 3 54 6 7BA
C

D
hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

E
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Open Addressing

0 1 2 3 54 6 7BA C D E

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

!

!

“Cascade” collisions to the next available spot
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Open Addressing

0 1 2 3 54 6 7

apply(A)

1

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot
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Open Addressing

0 1 2 3 54 6 7

apply(C)

1 2

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot
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Open Addressing

0 1 2 3 54 6 7

apply(E)

1 2 3

hash(A) = 1
hash(B) = 2
hash(C) = 2
hash(D) = 4
hash(E) = 3

BA C D E

“Cascade” collisions to the next available spot
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Open Addressing
● insert(X)

– While bucket hash(X)+i %N is occupied, i = i + 1
– Insert at bucket hash(X)+i %N

● apply(X)
– While bucket hash(X)+i %N is occupied

● If the element at bucket hash(X)+i %N is X, return it
● Otherwise i = i + 1 

– Element not found
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Open Addressing
● remove(X)

– While bucket hash(X)+i is occupied
● If the element at bucket hash(X)+i is X, remove it
● Otherwise i = i + 1

What about elements that were cascaded ?
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Removals Under Open Addressing
● Check each element in a contiguous block, starting at hash(X)

– Move elements up
● Don’t move any element Y ahead of hash(Y) 
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Open Addressing
● Linear Probing: Offset to hash(X)+ci for some constant c
● Quadratic Probing: Offset to hash(X)+ci2 for some constant c 
● Follow Probing Strategy to find the next bucket

● Runtime Costs
– Chaining: Dominated by following chain
– Open Addressing: Dominated by probing

● With a low enough αmax, operations still O(1)
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Cuckoo Hashing
● Use two hash functions: hash1, hash2

– Each record is stored at one of the two
● insert(x)

– If both buckets are available: pick at random
– If one bucket is available: insert record there
– If neither bucket is available, pick one at random

● “Displace” the record there, move it to the other bucket
● Repeat displacement until an empty bucket is found

apply(x) and remove(x) is guaranteed O(1)
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