Your hash bucket was tasty

CSE 250

 Lecture 29
Hash Tables

Alternative Idea: Assign Buckets

- Pros
- O(1) Insert
- O(1) Find
- O(1) Remove
- Cons
- Wasted Space (Only 3/26 slots used)
- Duplication (What about Aramis?)

Bucket-Based Organization

- Wasted Space
- Not ideal, but not wrong
- O(1) access time might be worth it!
- Also depends on choice of function (more on this later)
- Duplication
- We need to deal with duplicates!

Buckets + Linked Lists

Picking a Lookup Function

- Desirable Features for $h(x)$
- Fast
- needs to be O(1)
- "Unique"
- As few duplicate bins as possible

Picking a Lookup Function

Almost Ideal!

... and achievable
apply (k) is something like $\mathrm{O}(1)$?

Buckets

Picking a Lookup Function

- Wacky Idea: Have $h(x)$ return a random value in [0, N)
- Random.nextInt \% N
(Yes, it makes apply impossible, but bear with me)

Hash Functions

- Examples
- SHA256 \leftarrow used by GIT
- MD5, BCRYPT \leftarrow used by unix login, apt
- MurmurHash3 \leftarrow used by Scala
- hash(x) is pseudorandom

1) hash(x) ~ uniform random value in [0, INT_MAX)
2) hash(x) always returns the same value
3) hash(x) uncorrelated with hash(y) for $x \neq y$

$$
\text { hash }(x) \text { is deterministic, but statistically random }
$$

Hash Functions

- Not-so-Wacky Idea: Use hash function to pick bucket
- $h(x)=$ hash $(x) \% N$
- Pseudorandom ("evenly distributed" over N)
- Deterministic (same value every time)

Expectation

- X is a random variable
- $X=1$ with $p=0.2$
- $X=2$ with $p=0.7$
- $X=3$ with $p=0.1$
- $E[X]$ is the "expectation of X "
- The average of X taken over all possibilities (weighted by p)
$-\mathrm{E}[\mathrm{X}]=(1 \times 0.2)+(2 \times 0.7)+(3 \times 0.1)$
- $=0.2+1.4+0.3=1.9$

Expected Size of a Bucket

- After n insertions, how many records can we "expect" in the average bucket?
- Let X_{j} be the number of records in bucket j
- After n insertions, $0 \leq \mathrm{X}_{\mathrm{j}} \leq \mathrm{n}$
- $\mathrm{Xj}=0$ with $\mathrm{p}=$???
- $\mathrm{Xj}=1$ with $\mathrm{p}=$???
- ...
- $\mathrm{Xj}=\mathrm{n}$ with $\mathrm{p}=$???

$$
\text { what is } \mathrm{p} \text { ? }
$$

Expected Size of a Bucket

- Assume N buckets
- Start with 1 insertion ($\mathrm{n}=1$)
- $X_{j}=0$ with $p={ }^{(N-1)} / \mathrm{N}$
- $X_{j}=1$ with $p=1 / \mathrm{N}$
- $E[X]=\left(0 x^{(N-1) / N)}+\left(1 x^{1 / N}\right)=1 / N\right.$

Expected Size of a Bucket

- For n insertions, we repeat the process ($n X_{j} s$)

$$
-X_{1, j}, X_{2, j}, \ldots, X_{n, j}
$$

- $E\left[\Sigma_{i} X_{i, j}\right]=E\left[X_{1, j}\right]+\ldots+E\left[X_{n, j}\right]$

$$
-=1 / N+1 / N+\ldots+1 / N
$$

$$
-\quad=n / \mathrm{N}
$$

- The expected runtime of insert, apply, remove is $\mathrm{O}(\mathrm{n} / \mathrm{N})$
- The worst-case runtime of insert, apply, remove is $\mathrm{O}(\mathrm{n})$

Using Hash Functions

- hash(x: Int): Int

Arbitrary starting constant

- What about strings?
def hashString(str: String): Int $=\{$
var accumulator: Int = SEED
for(character <- str) \{ accumulator $=$ hash(accumulator * character.toInt)
\}
return accumulator \}

(simplified, don't actually do exactly this)

call hash() str.length times

Hash Functions

- hash(x: Object): Int
- In Java/Scala, call x.hashCode

Iterating over a hash table

\uparrow

Iterating over a hash table

A

Iterating over a hash table

$$
\begin{array}{|l|l|l|}
\hline & \text { A } & \text { B } \\
\hline
\end{array}
$$

Iterating over a hash table

$$
\begin{array}{|l|l|l|}
\hline A & B & C \\
\hline
\end{array}
$$

Iterating over a hash table

$$
\begin{array}{|l|l|l|l|l|}
\hline A & B & C & D \\
\hline
\end{array}
$$

Iterating over a hash table

Iterating over a hash table

ABCDE

Iterating over a hash table

ABCDE

Iterating over a hash table

- Runtime
- Visit every hash bucket
- O(N)
- Visit every element in every bucket
- O(n)
$=O(N+n)$

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant

Fix an $\alpha_{\max }$ and start requiring that $\alpha \leq \alpha_{\max }$

What happens when the user inserts $\mathbf{n}=\mathbf{N} \times \boldsymbol{\alpha}_{\text {max }}+1$ records ?

Rehashing

- Resize the array from $\mathrm{N}_{\text {old }}$ to $\mathrm{N}_{\text {new }}$.
- Element x moves from hash(x) \% Nold to hash(x) \% $\mathrm{N}_{\text {new }}$

Rehashing

0	1	2	3	4	5	6	7

Rehashing

- Resize the array from $\mathrm{N}_{\text {old }}$ to $\mathrm{N}_{\text {new }}$.
- Element x moves from hash(x) \% $\mathrm{N}_{\text {old }}$ to hash(x) \% $\mathrm{N}_{\text {new }}$
- Runtime?
- Allocate new array: O(1)
- Visit every hash bucket: O(Nold)
- Hash and copy each element to the new array: O(n)
- Free the old array: O(1)
$-\mathrm{O}(1)+\mathrm{O}\left(\mathrm{N}_{\text {old }}\right)+\mathrm{O}(\mathrm{n})+\mathrm{O}(1)=\mathrm{O}\left(\mathrm{N}_{\text {old }}+\mathrm{n}\right)$

Rehashing

- Whenever $\alpha>\alpha_{\text {max }}$, rehash to double size
- Contrast with ArrayBuffer
- Starting with \underline{N} buckets, after \underline{n} insertions..
- Rehash at $\mathrm{n}_{1}=\alpha_{\max } \times \mathrm{N}$: From N to 2 N Buckets
- Rehash at $n_{2}=\alpha_{\max } \times 2 N$: From $2 N$ to $4 N$ Buckets
- Rehash at $n_{3}=\alpha_{\max } \times 4 N$: From 4N to $8 N$ Buckets
- Rehash at $\mathrm{n}_{\mathrm{j}}=\alpha_{\max } \times 2^{\mathrm{j}} \mathrm{N}$: From $2^{\mathrm{j}-1} \mathrm{~N}$ to $2^{\mathrm{j}} \mathrm{N}$ Buckets

Number of Rehashes

With n insertions...

$$
\begin{aligned}
& n=2^{j} \alpha_{\max } \\
& 2^{j}=\frac{n}{\alpha_{\max }} \\
& j=\log \left(\frac{n}{\alpha_{\max }}\right) \\
& j=\log (n)-\log \left(\alpha_{\max }\right) \\
& j \leq \log (n)
\end{aligned}
$$

Total Work

Rehashes required: $\quad \leq \log (n)$
The i-th rehashing:

$$
O\left(2^{i} N\right)
$$

Total work after n insertions is no more than...

$$
\sum_{i=0}^{\log (n)} O\left(2^{i} N\right)
$$

$$
=O\left(N \sum_{i=0}^{\log (n)} 2^{i}\right)
$$

$$
=O\left(2^{\log (n)+1}-1\right)
$$

$$
=O(n)
$$

Work per insertion: (amortized cost)

$$
O\left(\frac{n}{n}\right)=O(1)
$$

Recap: So Far

- Current Design: Hash Table with Chaining
- Array of Buckets
- Each bucket is the head of a linked list (a "chain")

Recap: apply(x)

- Expected Cost
- Find the bucket: $O\left(C_{\text {hash }}\right)$
- Find the record: $O\left(\alpha C_{\text {equality }}\right)$
- Total: $\mathrm{O}\left(C_{\text {hash }}+\alpha \mathrm{C}_{\text {equality }}\right) \approx \mathrm{O}(1+1)=\mathrm{O}(1)$
- Worst-Case Cost
- Find the record: O(n Cequality)
- Total: $\mathrm{O}\left(\mathrm{c}_{\text {hash }}+\mathrm{n} \mathrm{C}_{\text {equality }}\right) \approx \mathrm{O}(1+\mathrm{n})=\mathrm{O}(\mathrm{n})$

Recap: remove(x)

- Expected Cost
- Find the bucket: $O\left(C_{\text {hash }}\right)$
- Find the record: $O\left(\alpha C_{\text {equality }}\right)$
- Remove from linked-list: O(1)
- Total: $\mathrm{O}\left(\mathrm{C}_{\text {hash }}+\alpha \mathrm{C}_{\text {equality }}+1\right) \approx \mathrm{O}(1+1+1)=\mathrm{O}(1)$
- Worst-Case Cost
- Find the record: $O\left(n C_{\text {equality }}\right)$
- Total: $\mathrm{O}\left(\mathrm{C}_{\text {hash }}+\mathrm{n} \mathrm{C}_{\text {equality }}+1\right) \approx \mathrm{O}(1+\mathrm{n}+1)=\mathrm{O}(\mathrm{n})$

Recap: insert(x)

- Expected Cost
- Find the bucket: O(Chash)
- Remove the key, if present: $O\left(\alpha C_{\text {equality }}+1\right)$
- Prepend to linked-list: O(1)
- Total: $\mathrm{O}\left(\mathrm{C}_{\text {hash }}+\alpha \mathrm{C}_{\text {equality }}+1+1\right) \approx \mathrm{O}(1+1+2)=\mathrm{O}(1)$
- Worst-Case Cost
- Remove the key, if present: O(n Cequality +1)
- Total: $\mathrm{O}\left(\mathrm{C}_{\text {hash }}+\mathrm{n} \mathrm{C}_{\text {equality }}+1+1\right) \approx \mathrm{O}(1+\mathrm{n}+2)=\mathrm{O}(\mathrm{n})$

Variations

- Hash Table with Chaining
- ... but re-use empty hash buckets instead of chaining
- Hash Table with Open Addressing
- Cuckoo Hashing (Double Hashing)
- ... but avoid bursty rehashing costs
- Dynamic Hashing
- ... but avoid O(N) iteration cost
- Linked Hash Table

Chaining

hash $(A)=1$ $\operatorname{hash}(B)=2$ hash(C) $=2$ hash(D) $=4$ hash(E) $=3$

Open Addressing

$$
\begin{aligned}
\operatorname{hash}(A) & =1 \\
\operatorname{hash}(B) & =2 \\
\operatorname{hash}(C) & =2 \quad! \\
\operatorname{hash}(D) & =4 \\
\operatorname{hash}(E) & =3
\end{aligned}
$$

"Cascade" collisions to the next available spot

Open Addressing

apply(A)

hash $(A)=1$ hash $(B)=2$ hash $(\mathrm{C})=2$ hash(D) $=4$ hash(E) $=3$
"Cascade" collisions to the next available spot

Open Addressing

"Cascade" collisions to the next available spot

Open Addressing

"Cascade" collisions to the next available spot

Open Addressing

- insert(X)
- While bucket hash $(\mathrm{X})+\mathrm{i} \% \mathrm{~N}$ is occupied, $\mathrm{i}=\mathrm{i}+1$
- Insert at bucket hash(X)+i \%N
- apply(X)
- While bucket hash(X)+i $\% \mathrm{~N}$ is occupied
- If the element at bucket hash(X)+i \%N is X , return it
- Otherwise $\mathrm{i}=\mathrm{i}+1$
- Element not found

Open Addressing

- remove(X)
- While bucket hash $(X)+i$ is occupied
- If the element at bucket hash $(\mathrm{X})+\mathrm{i}$ is X , remove it
- Otherwise $\mathrm{i}=\mathrm{i}+1$

What about elements that were cascaded?

Removals Under Open Addressing

- Check each element in a contiguous block, starting at hash(X)
- Move elements up
- Don't move any element Y ahead of hash(Y)

Open Addressing

- Linear Probing: Offset to hash(X)+ci for some constant c
- Quadratic Probing: Offset to hash $(X)+\mathrm{ci}^{2}$ for some constant c
- Follow Probing Strategy to find the next bucket
- Runtime Costs
- Chaining: Dominated by following chain
- Open Addressing: Dominated by probing
- With a low enough $\alpha_{\text {max }}$, operations still O(1)

Cuckoo Hashing

- Use two hash functions: hash $_{1}$, hash $_{2}$
- Each record is stored at one of the two
- insert(x)
- If both buckets are available: pick at random
- If one bucket is available: insert record there
- If neither bucket is available, pick one at random
- "Displace" the record there, move it to the other bucket
- Repeat displacement until an empty bucket is found
apply(x) and remove(x) is guaranteed $O(1)$

