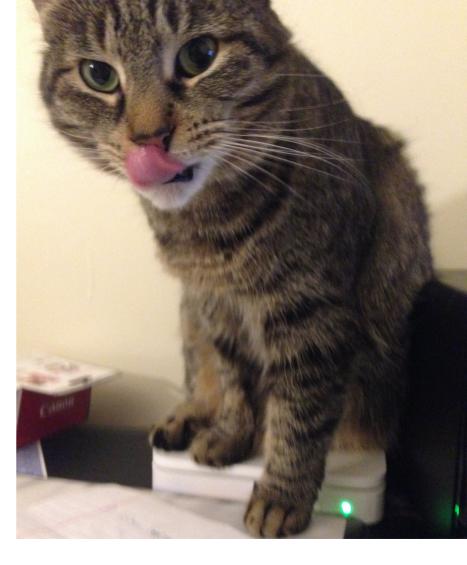
Your hash bucket was tasty

# CSE 250 Lecture 29

Hash Tables



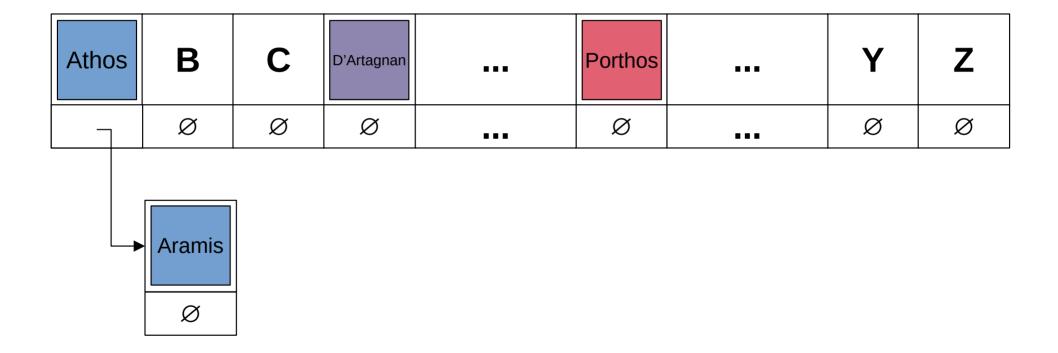
## **Alternative Idea: Assign Buckets**

- Pros
  - O(1) Insert
  - O(1) Find
  - O(1) Remove
- Cons
  - Wasted Space (Only 3/26 slots used)
  - Duplication (What about <u>Aramis?</u>)

### **Bucket-Based Organization**

- Wasted Space
  - Not ideal, but not wrong
  - O(1) access time might be worth it!
  - Also depends on choice of function (more on this later)
- Duplication
  - We need to deal with duplicates!

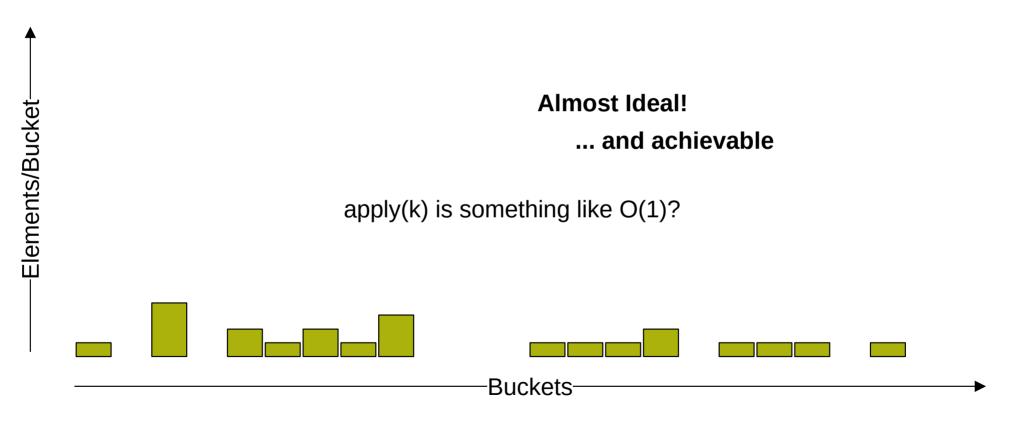
### **Buckets + Linked Lists**



### **Picking a Lookup Function**

- Desirable Features for h(x)
  - Fast
    - needs to be O(1)
  - "Unique"
    - As few duplicate bins as possible

### **Picking a Lookup Function**



### Picking a Lookup Function

- Wacky Idea: Have h(x) return a random value in [0, N)
  - Random.nextInt % N

(Yes, it makes apply impossible, but bear with me)

#### **Hash Functions**

- Examples
  - SHA256 ← used by GIT
  - MD5, BCRYPT ← used by unix login, apt
  - MurmurHash3 ← used by Scala
- hash(x) is pseudorandom
  - 1) hash(x)  $\sim$  uniform random value in [0, INT\_MAX)
  - 2) hash(x) always returns the same value
  - 3) hash(x) uncorrelated with hash(y) for  $x \neq y$

#### hash(x) is <u>deterministic</u>, but <u>statistically random</u>

### **Hash Functions**

- Not-so-Wacky Idea: Use hash function to pick bucket
  - h(x) = hash(x) % N
    - Pseudorandom ("evenly distributed" over N)
    - Deterministic (same value every time)

### **Expectation**

- X is a random variable
  - X = 1 with p = 0.2
  - X = 2 with p = 0.7
  - X = 3 with p = 0.1
- E[X] is the "expectation of X"
  - The average of X taken over all possibilities (weighted by p)
  - $E[X] = (1 \times 0.2) + (2 \times 0.7) + (3 \times 0.1)$ 
    - $\bullet$  = 0.2 + 1.4 + 0.3 = 1.9

### **Expected Size of a Bucket**

- After n insertions, how many records can we "expect" in the average bucket?
- Let X<sub>i</sub> be the number of records in bucket j
  - After n insertions,  $0 \le X_i \le n$ 
    - Xj = 0 with p = ???
    - $X_i = 1$  with p = ???
    - •
    - Xj = n with p = ???

#### what is p?

### **Expected Size of a Bucket**

- Assume N buckets
- Start with 1 insertion (n = 1)
  - $X_{j} = 0$  with  $p = {N-1 \choose N}$
  - $X_{j} = 1 \text{ with } p = \frac{1}{N}$
- $E[X] = (0 \times {(N-1)/N}) + (1 \times {1/N}) = {1/N}$

### **Expected Size of a Bucket**

- For n insertions, we repeat the process (n X<sub>i</sub>s)
  - $X_{1,j}$ ,  $X_{2,j}$ , ...,  $X_{n,j}$
- $E[\Sigma_i X_{i,j}] = E[X_{1,j}] + ... + E[X_{n,j}]$ 
  - $= \frac{1}{N} + \frac{1}{N} + \dots + \frac{1}{N}$
  - = n/N
- The <u>expected</u> runtime of insert, apply, remove is O(n/N)
- The worst-case runtime of insert, apply, remove is O(n)

## **Using Hash Functions**

- hash(x: Int): Int
  - What about strings?

```
def hashString(str: String): Int = {
  var accumulator: Int = SEED {
  for(character <- str){
    accumulator = hash(accumulator * character.toInt)
  }
  return accumulator
}</pre>
```

(simplified, don't actually do exactly this)

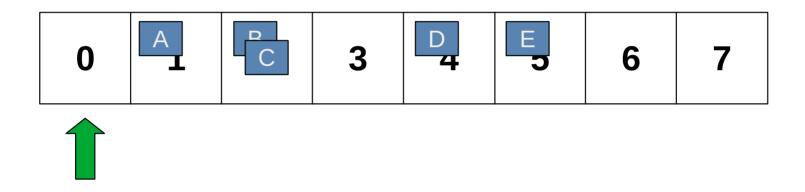
call hash() str.length times

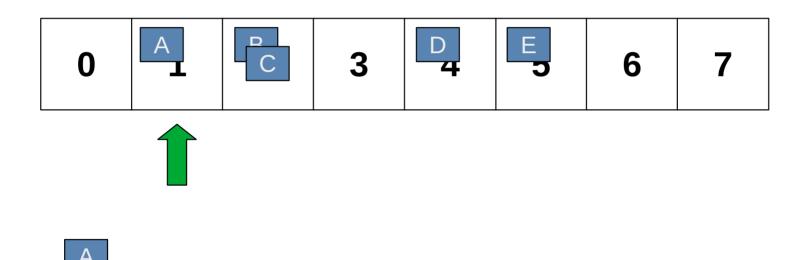
Arbitrary starting constant

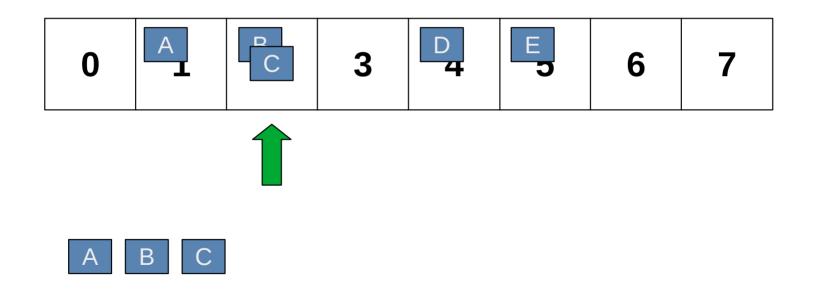
( hash("") )

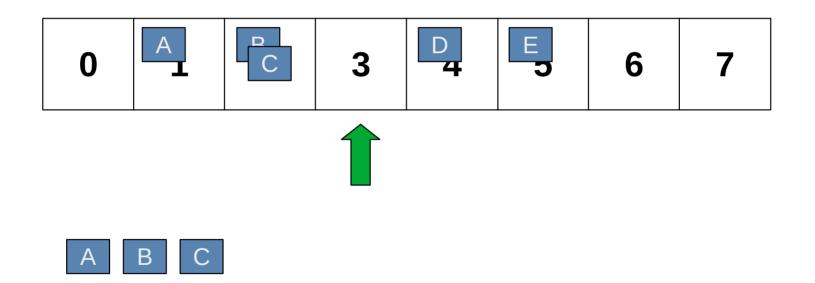
#### **Hash Functions**

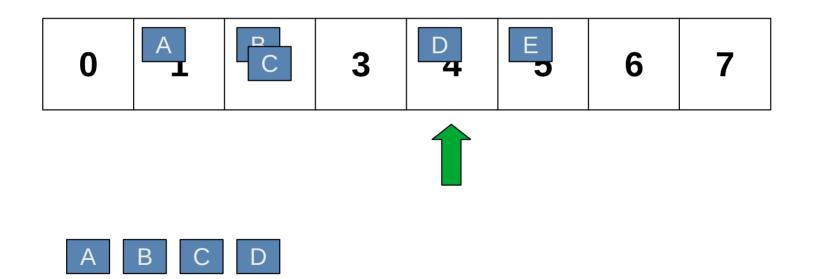
- hash(x: Object): Int
  - In Java/Scala, call x.hashCode

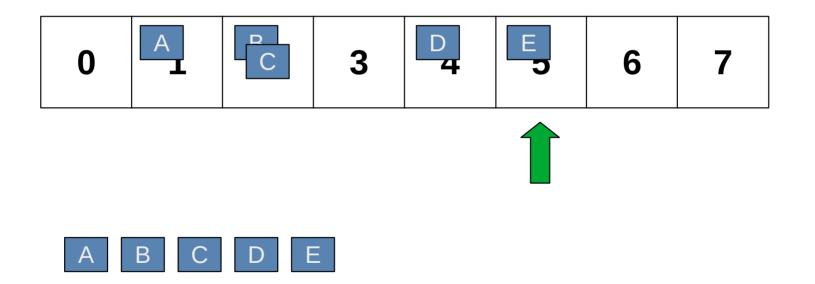


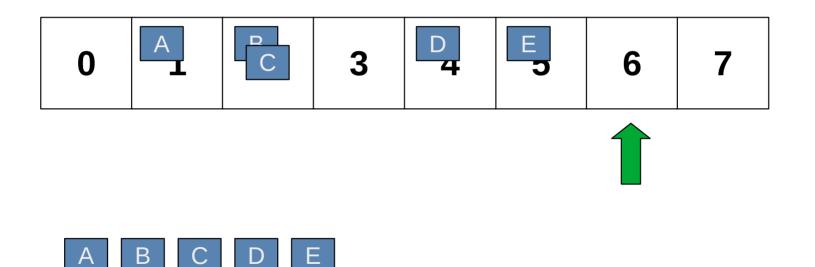


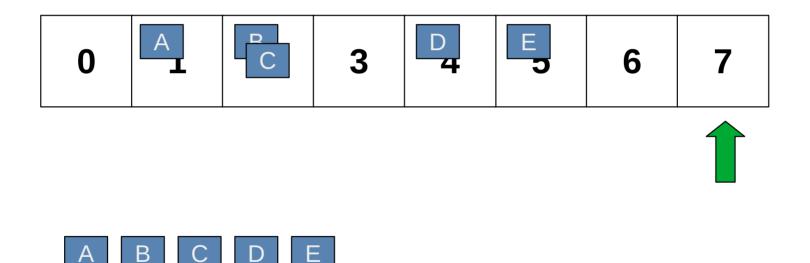












- Runtime
  - Visit every hash bucket
    - O(N)
  - Visit every element in every bucket
    - O(n)
    - = O(N + n)

### Hash Functions + Buckets

Everything is: 
$$O\left(rac{n}{N}
ight)$$

Everything is: 
$$O\left(\frac{n}{N}\right)$$
 Let's call  $\alpha=\frac{n}{N}$  the load factor.

**Idea:** Make α a constant

Fix an  $\alpha_{max}$  and start requiring that  $\alpha \leq \alpha_{max}$ 

What happens when the user inserts  $n = N \times \alpha_{max} + 1$  records?

- Resize the array from N<sub>old</sub> to N<sub>new</sub>.
  - Element x moves from hash(x) % N<sub>old</sub> to hash(x) % N<sub>new</sub>

$$hash(x) = 1029$$

1029 % 8 = 5

| 0 | 1 | 2 | X | 4 | 5 |
|---|---|---|---|---|---|
|---|---|---|---|---|---|

0 1 2 3 4 5 6 7

- Resize the array from  $N_{old}$  to  $N_{new}$ .
  - Element x moves from hash(x) % N<sub>old</sub> to hash(x) % N<sub>new</sub>
- Runtime?
  - Allocate new array: **O(1)**
  - Visit every hash bucket: O(N₀Id)
  - Hash and copy each element to the new array: O(n)
  - Free the old array: O(1)
  - $O(1) + O(N_{old}) + O(n) + O(1) = O(N_{old} + n)$

- Whenever  $\alpha > \alpha_{max}$ , rehash to double size
  - Contrast with ArrayBuffer
- Starting with <u>N</u> buckets, after <u>n</u> insertions...
  - Rehash at  $n_1 = \alpha_{max} \times N$ : From N to 2N Buckets
  - Rehash at  $n_2 = \alpha_{max} \times 2N$ : From 2N to 4N Buckets
  - Rehash at  $n_3 = \alpha_{max} \times 4N$ : From 4N to 8N Buckets
  - ...
  - Rehash at  $n_i = \alpha_{max} \times 2^j N$ : From  $2^{j-1}N$  to  $2^j N$  Buckets

### **Number of Rehashes**

With n insertions...

$$n = 2^{j} \alpha_{max}$$

$$2^{j} = \frac{n}{\alpha_{max}}$$

$$j = \log(\frac{n}{\alpha_{max}})$$

$$j = \log(n) - \log(\alpha_{max})$$

$$j \leq \log(n)$$

### **Total Work**

Rehashes required:  $\leq \log(n)$ 

The i-th rehashing:  $O(2^i N)$ 

Total work after n insertions is no more than...

$$\sum_{i=0}^{\log(n)} O(2^{i}N) = O\left(N\sum_{i=0}^{\log(n)} 2^{i}\right)$$
$$= O\left(2^{\log(n)+1} - 1\right)$$
$$= O(n)$$

Work per insertion:  $O\left(\frac{n}{n}\right) = O(1)$  (amortized cost)

### Recap: So Far

- Current Design: Hash Table with Chaining
  - Array of Buckets
  - Each bucket is the head of a linked list (a "chain")

### Recap: apply(x)

- Expected Cost
  - Find the bucket: O(c<sub>hash</sub>)
  - Find the record:  $O(\alpha c_{equality})$
  - **Total**:  $O(c_{hash} + \alpha c_{equality}) \approx O(1 + 1) = O(1)$
- Worst-Case Cost
  - Find the record: O(n c<sub>equality</sub>)
  - Total:  $O(c_{hash} + n c_{equality}) \approx O(1 + n) = O(n)$

### Recap: remove(x)

- Expected Cost
  - Find the bucket: O(c<sub>hash</sub>)
  - Find the record:  $O(\alpha c_{equality})$
  - Remove from linked-list: O(1)
  - **Total**:  $O(c_{hash} + \alpha c_{equality} + 1) \approx O(1 + 1 + 1) = O(1)$
- Worst-Case Cost
  - Find the record: O(n c<sub>equality</sub>)
  - Total:  $O(c_{hash} + n c_{equality} + 1) \approx O(1 + n + 1) = O(n)$

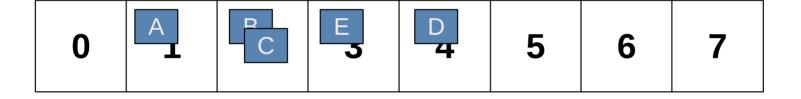
### Recap: insert(x)

- Expected Cost
  - Find the bucket: O(c<sub>hash</sub>)
  - Remove the key, if present:  $O(\alpha c_{equality} + 1)$
  - Prepend to linked-list: O(1)
  - **Total**:  $O(c_{hash} + \alpha c_{equality} + 1 + 1) \approx O(1 + 1 + 2) = O(1)$
- Worst-Case Cost
  - Remove the key, if present:  $O(n c_{equality} + 1)$
  - **Total**:  $O(c_{hash} + n c_{equality} + 1 + 1) \approx O(1 + n + 2) = O(n)$

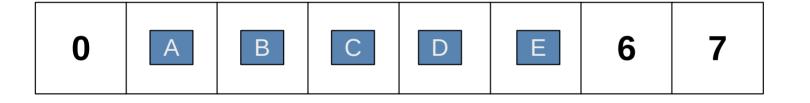
#### **Variations**

- Hash Table with Chaining
  - but re-use empty hash buckets instead of chaining
    - Hash Table with Open Addressing
    - Cuckoo Hashing (Double Hashing)
  - but avoid bursty rehashing costs
    - Dynamic Hashing
  - ... but avoid O(N) iteration cost
    - Linked Hash Table

### Chaining

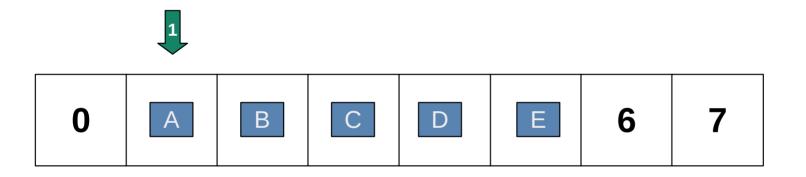


hash(A) = 1 hash(B) = 2 hash(C) = 2 hash(D) = 4hash(E) = 3



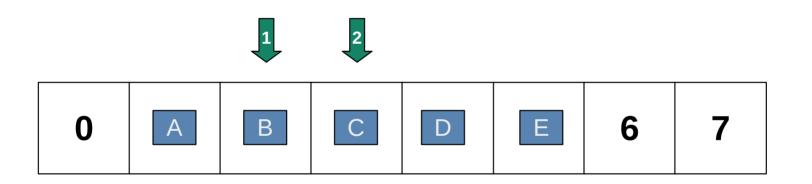
hash(A) = 1 hash(B) = 2 hash(C) = 2 hash(D) = 4 hash(E) = 3





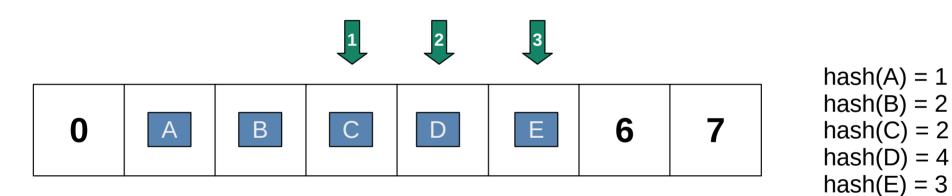
$$hash(A) = 1$$
  
 $hash(B) = 2$   
 $hash(C) = 2$   
 $hash(D) = 4$   
 $hash(E) = 3$ 

#### apply(C)



hash(A) = 1 hash(B) = 2 hash(C) = 2 hash(D) = 4hash(E) = 3

apply(E)



- insert(X)
  - While bucket hash(X)+i %N is occupied, i = i + 1
  - Insert at bucket hash(X)+i %N
- apply(X)
  - While bucket hash(X)+i %N is occupied
    - If the element at bucket hash(X)+i %N is X, return it
    - Otherwise i = i + 1
  - Element not found

- remove(X)
  - While bucket hash(X)+i is occupied
    - If the element at bucket hash(X)+i is X, remove it
    - Otherwise i = i + 1



What about elements that were cascaded?

### **Removals Under Open Addressing**

- Check each element in a contiguous block, starting at hash(X)
  - Move elements up
    - Don't move any element Y ahead of hash(Y)

- Linear Probing: Offset to hash(X)+ci for some constant c
- Quadratic Probing: Offset to hash(X)+ci<sup>2</sup> for some constant c
- Follow Probing Strategy to find the next bucket

- Runtime Costs
  - Chaining: Dominated by following chain
  - Open Addressing: Dominated by probing
- With a low enough  $\alpha_{max}$ , operations still O(1)

### **Cuckoo Hashing**

- Use two hash functions: hash<sub>1</sub>, hash<sub>2</sub>
  - Each record is stored at one of the two
- insert(x)
  - If both buckets are available: pick at random
  - If one bucket is available: insert record there
  - If neither bucket is available, pick one at random
    - "Displace" the record there, move it to the other bucket
    - Repeat displacement until an empty bucket is found

apply(x) and remove(x) is guaranteed O(1)