the real complexities are hiding

CSE 250 Lecture 35

The Memory Hierarchy

Lies!

- Lie 1: Accessing any element of an array of any length is O(1)
 - The "RAM" model of computation
 - Simplified model... but not perfect
 - Real-world Hardware isn't this simple:
 - The Memory Hierarchy
 - Non-Uniform Memory Access (NUMA)
- Lie 2: The constants don't matter

Algorithm Bounds

- Runtime Bounds
 - The algorithm takes O(...) time.
- Memory Bounds
 - The algorithm needs O(...) storage
- IO Bounds
 - The algorithm performs O(...) accesses to slower memory

The Memory Hierarchy (simplified)

The Memory Hierarchy (simplified)

Reading an Array Entry

- Is the array entry in cache?
 - Yes
 - Return it (1-4 clock cycles)
 - No
 - Is the array entry in real memory
 - Yes
 - Load it into cache (10s of clock cycles)
 - No
 - Load it out of virtual memory (100s of clock cycles)

HUGE constant

Tiny constant

So-so constant

Reading an Array Entry

It matters whether we're reading from cache, memory, or disk!

Today: Memory vs Disk

Fall 2022

©Oliver Kennedy, Eric Mikida, Andrew Hughes The University at Buffalo, SUNY

Ground Rules: Disk vs RAM

- All data starts off in a file on disk
 - Need to load data into RAM before accessing it.
 - Load data in 4KB chunks ("pages").
 - The amount of available RAM is finite.
 - Deallocating a page is one instruction.
 - ... unless it was modified and needs to be written back.
- 3 features describe an algorithm:
 - Number of instructions (runtime complexity)
 - Number of data loads (IO complexity)
 - Number of pages of RAM required (memory complexity)

Similar rules apply to any pair of levels of the memory hierarchy.

Fall 2022

- 2²⁰ (~1M) Records, 64 bytes each (8 byte key, 56 byte value)
 - 64 MB of data, 16,384 4k pages, 64 records/page
- Binary Search: $\sim \log(2^{20}) = 20$ steps

• 2²⁰ (~1M) Records, 64 bytes each (8 byte key, 56 byte value)

- 64 MB of data, 16,384 4k pages, 64 records/page
- Example: Binary Search (Answer: At position 0)

- 2²⁰ (~1M) Records, 64 bytes each (8 byte key, 56 byte value)
 - 64 MB of data, 16,384 4k pages, 64 records/page
- Example: Binary Search (Answer: At position 0)

- 2²⁰ (~1M) Records, 64 bytes each (8 byte key, 56 byte value)
 - 64 MB of data, 16,384 4k pages, 64 records/page
- Example: Binary Search (Answer: At position 0)
 - Steps 0-14 each load 1 page (15 pages loaded)
 - slooooow...
 - Steps 15-19 access the same page as step 14
 - fast!

What's the memory complexity?

How does it scale with the # of records?

Complexity

- **n** records total
- **R** record size (in Bytes)
- **P** page size (in Bytes)
- $\mathbf{C} = \lfloor \frac{R}{P} \rfloor$ records per page

Binary Search Complexity

- Overall binary search runtime:
 - log(n) steps
- Behavior goes through two stages
 - **Stage 1**: Each request goes to a new page (e.g., 0-13)
 - $\log(n) \log(\mathbf{C}) (= \log(n) \log(R/P))$ steps
 - **Stage 2**: One load for all requests (e.g., 14-19)
 - log(C) steps

Binary Search: Complexity

- Memory Complexity
 - Stage 1
 - Each page is never used again, can discard immediately
 - Stage 2
 - All use the same page
 - We're interested in the maximum memory use <u>at one time</u>.

The "Working Set" size is 1 page

Binary Search: Complexity

- 1 page always has 64 records
 - The last 6 binary search steps are all on the same page
- With Scaling n...
 - 2²¹ records (32GB): 21 binary search steps, 16 loads
 - 2²² records (64GB): 22 binary search steps, 17 loads
 - 2²³ records (128GB): 23 binary search steps, 18 loads

Binary Search: Complexity

- IO Complexity:
 - Stage 1:
 - Each step does one load: O(log(n) log(C)) = O(log(n))
 - Stage 2:
 - Exactly one load for the entire step: O(1)
 - Total IO is the sum of the IOs of the component steps

IO Complexity scales as log₂(n)

How do we improve Binary Search?

• Observation 1:

- 64 MB of 2²⁰ x sizeof(key + data)

VS

- $2^{20} \times 8B = 8 \text{ MB of keys}$
- Observation 2:
 - We don't need to know which array index the record is at
 - ... only the page it's on
 - ... and each page stores a contiguous range of keys

Fence Pointers

- Idea: Precompute the greatest key in each page in memory
 - n records; 64 records/page; ⁿ/₆₄ keys
 - e.g., $n=2^{20}$ records; Needs 2^{14} keys
 - 2^{20} 64 byte records = 64 MB
 - 2^{14} 8 byte records = 2^{19} bytes = 512 **K**B
 - Call this a "Fence Pointer Table"

RAM: 2¹⁴ = 16,384 keys (Fence Pointer Table)

Disk: 16,384 pages (Actual Data)

Example

Example (Why "fence pointer"?)

Fence Pointers

- **Step 1**: Binary Search on the Fence Pointer Table
 - All in-memory (IO complexity = 0)
- Step 2: Load page
 - One load (IO complexity = 1)
- **Step 3**: Binary search within page
 - All in-memory (IO complexity = 0)
- Total IO Complexity: O(1)

Fence Pointers

- Memory Complexity:
 - Need the entire fence pointer table in memory **at all times**
 - O(n / C) pages = O(n)
 - Steps 2, 3 load one more page
 - **Total**: O(n+1) = O(n)

O(n) is... not ideal