And now for a brief paws

CSE 250 Lecture 34

 Patterns in Data Science
Data Science Is Everywhere

- The Corporate World (e.g. MANGA)
- Open Data \rightarrow Civic Computing
- Science!
- Internet of Things

Data Science Data is Big

- $O(f(n))$: The behavior of $f(n)$ as n gets really really big
- Data Science works with 100MBs, TBs of data
- n gets really really big

Today's Lecture

- Examples of a data science pattern
- Algorithms for the pattern (\leftarrow useful for PA4)
- Twists on the pattern (\leftarrow advanced ideas, not covered on Final)

Usage Pattern 1: MANGA

- Dataset: Sales
- productID: Int
- date: Date
- volume: Int
- Objective
- Find the 100 most purchased products from in the last month (by ID)

Usage Pattern 1: Open Data

- Dataset: TrafficViolations
- blockID: Int
- infraction: InfractionType
- date: Date
- Objective
- Find the fraction of parking tickets that were issued in each block (by the block's ID)

Usage Pattern 1: Science!

- Dataset: Patient
- patientld: Int
- doseVolume: Double
- contractedCOVID: Boolean
- Objective
- What is the dosage that minimizes the rate of contracting COVID.

Usage Pattern 1: Internet of Things

- Dataset: EngineDailyLog
- engineID: Int
- date: Date
- kmTraveledToday: Double
- Objective:
- A train engine needs to be serviced every 30,000km. Which engines need service?

Usage Pattern 1: Aggregation

- Examples:
- "sum up __, for each \qquad
- "average \qquad , by __"
- "number of \qquad , for __"
- "biggest __, for each __"
- Pattern
- (Optionally) Group records by a "Group By" key
- For each group, compute a statistic
- e.g., sum, count, average, min, max

Aggregation

Code Example

Aggregation

- Twist 1: Not enough memory for all of the groups
- e.g., All of Amazon, Google's users; LHC particles
- Idea: Use disk for storage
- Problem: Group-by keys not in any specific order, most accesses will be random (slow).
- Idea: O(n) pass to organize the data

Buffered Writer

Buffer

Buffered Writer

Buffer

Fall 2022

Hash Partitioning

h(key) \% N = 1

h(key) $\% \mathrm{~N}=2$

Hash Partitioning

Hash Partitioning

h(key) $\% \mathrm{~N}=1$

h(key) $\% \mathrm{~N}=2$

Hash Partitioning

h(key) $\% \mathrm{~N}=1$

h(key) $\% \mathrm{~N}=2$

Hash Partitioning

h(key) $\% \mathrm{~N}=1$

Hash Partitioning

h(key) $\% \mathrm{~N}=1$

h(key) $\% \mathrm{~N}=2$

Hash Partitioning

$\mathrm{O}(\mathrm{n})$ writes to disk

Hash Aggregation

1. Load file
2. Compute Aggregate In-Memory
3. Repeat for next file

All instances of a key will be in the same file $O(n)$ reads

Aggregation

- Twist 2: Distributed Computation
- Idea 1: Compute Locally, Send Aggregates
- Idea 2: Hash Partition (Shuffle) to each Computer

Usage Pattern 2: MANGA

- Dataset: Sales
- productID: Int
- date: Date
- volume: Int
- Dataset: Pricing
- productID: Int
- price: Boolean
- Objective
- Find the 100 products with greatest gross profit (by ID).

Usage Pattern 2: Open Data

- Dataset: TrafficViolations
- blockID: Int
- infraction: InfractionType
- date: Date
- Dataset: PropertyTaxAssessments
- buildingOwner: String
- blockID: Int
- assessment: Double
- Objective
- Plot the total taxes collected for a given block against the number of parking tickets issued on that block.

Usage Pattern 2: Science!

- Dataset: Trials
- patientld: Int
- doseVolume: Double
- Dataset: Infections
- patientld: Int
- date: Date
- Objective
- What is the dosage that minimizes the rate of contracting COVID.

Usage Pattern 2: Internet of Things

- Dataset: EngineDailyLog
- enginelD: Int
- date: Date
- kmTraveledToday: Double
- IocationID: Int
- Dataset: Locations
- IocationID: Int
- shopSpacesAvailable: Int
- Objective:
- A train engine needs to be serviced every 30,000km. Are there more engines that need service at a location than cab be serviced there?

Usage Pattern 2: Joins

- Examples:
- "combine these datasets"
- "look up __ for each __"
- "join __ and __ on __"
- Pattern
- For each record in one dataset...
- ... find the corresponding record(s) in the other set
- Output each pair of matched records

Joins

Code Example

Joins

- Twist 1: Too much data to build a hash table in memory
- Idea: Hash-partition both datasets on the join key
- Twist 2: Distributed Computation
- Idea: Hash-partition both datasets on the join key
- Idea: Send only relevant data
- Create a Bloom Filter from the join keys of each dataset

For more...

- If you're interested...
- CSE-305: How to build compilers for languages that can be used to express common data science patterns
- CSE-460: How to organize data to make it easier to find and apply tricks for common data science patterns
- CSE-462: How to build systems that automatically pick the best data structure/algorithm for each data science pattern
- CSE-486: How to build systems that do these sorts of computations "at scale"

