CSE 250 Lecture 37

Final Review

Day 1

Logarithms

Logarithms (refresher)

- Let $a, b, c, n>0$
- Exponent rule: $\log \left(n^{a}\right)=a \log (n)$
- Product rule: $\log (a n)=\log (a)+\log (n)$
- Division rule: $\log \left(\frac{n}{a}\right)=\log (n)-\log (a)$
- Change of base from b to $\mathrm{c}: \log _{b}(n)=\frac{\log _{c}(n)}{\log _{c}(b)}$
- Base changes are only a constant factor off
- Log/Exponent are inverses: $b^{\log _{b}(n)}=\log _{b}\left(b^{n}\right)=n$

Asymptotic Analysis

Growth Functions

A growth function must be a non-decreasing function of the form

Classify Functions by their Scaling

Big-O

Big-O

Big- Ω

Types of Bounds

- [no qualifier] Runtime: The guaranteed runtime of the function
- $O(g(n))$: The algorithm never runs slower than $c \cdot g(n)$
- $\Omega(\mathrm{g}(\mathrm{n}))$: The algorithm never runs faster than $\mathrm{c} \cdot \mathrm{g}(\mathrm{n})$
- $\Theta(g(n))$: The algorithm always runs within $[a \cdot g(n), b \cdot g(n)]$
- Amortized Runtime: Guaranteed per-call runtime over n calls
- $O(g(n)): n$ invocations of the algorithm take at most $c \cdot n \cdot g(n)$
- Expected Runtime: ‘Typical’ runtime without guarantees
- $O(g(n))$: The algorithm usually takes no more than $c \cdot g(n)$
- ... but it's random, it could take longer if you're unlucky.

Runtime Terminology

- "Worst-case" runtime
- The $O()$ runtime of the function
- "Tight" runtime
- A bound (O or Ω) with no better bound of the same type.
- Remember that $\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ (although it's not tight)
- A Θ bound is always tight.

Big-O

- Big-O (big oh) is an upper-bound on functions for any two functions $f, g: \mathbb{Z}^{+} \cup\{0\} \rightarrow \mathbb{R}^{+}$

Big- Ω

- Big- Ω (big omega) is a lower-bound on functions for any two functions $f, g: \mathbb{Z}^{+} \cup\{0\} \rightarrow \mathbb{R}^{+}$

There's some constant c and some "low" n value n_{0}

Big-O

- Big- Θ (big theta) is a joint bound on functions for any two functions $f, g: \mathbb{Z}^{+} \cup\{0\} \rightarrow \mathbb{R}^{+}$

Dominant Terms

exponential \gg polynomial $\gg \log \gg$ constant

Common Runtimes

- Constant Time: $\Theta(1)$
- e.g., $T(n)=c($ for some constant $c>0)$
- Logarithmic Time: $\Theta(\log (n))$
- e.g., $T(n)=c \log (n)$ (for some constant $c>0$)
- Linear Time: $\Theta(n)$
- e.g., $T(n)=c_{1} n+c_{0}$ (for some constants c_{1}, c_{0} where $\left.c_{1}>0\right)$
- Quadratic Time: $\Theta\left(n^{2}\right)$
- e.g., $T(n)=c_{2} n^{2}+c_{1} n+c_{0}$
- Polynomial Time: $\Theta\left(n^{k}\right)$ (for some $k \in \mathbb{Z}^{+}$)
- e.g., $T(n)=c_{k} n^{k}+\ldots+c_{2} n^{2}+c_{1} n+c_{0}$
- Exponential Time: $\Theta\left(c^{n}\right)$ (for some $c>0$)

Indexing into a Linked List

- Runtime to retrieve the ith element is linear in \mathbf{i}
- O (i) is a tight bound: $\mathrm{i} \leq \mathrm{O}(\mathrm{i})$
- $\mathrm{O}\left(\mathrm{i}^{2}\right)$ is a bound; $\mathrm{i} \leq \mathrm{O}\left(\mathrm{i}^{2}\right)$ (but not a tight one)
- $\Omega(\mathrm{i})$ is a tight bound: $\mathrm{i} \geq \Omega(\mathrm{i})$
- Since the runtime is $O(i)$ and $\Omega(\mathrm{i})$, it is also $\Theta(\mathrm{i})$

Appending to an ArrayBuffer

- Runtime is either constant [typical case] OR linear [if resizing]
- $O(n)$ is a tight bound: $1 \leq O(n), n \leq O(n)$
- $\Omega(1)$ is a tight bound: $1 \geq \Omega(1), \mathrm{n} \geq \Omega(1)$
- There is no Θ bound (the tight O bound \neq the tight Ω bound)
- Runtime of n appends is provably $O(n)$ (and $\Theta(n), \Omega(n)$)
- Amortized runtime of $0(n) / n=O(1)$

$\theta(i)$

- Observation
- The only time when tight bounds $O(f) \neq \Omega(f)$ is when f is
- ...defined by cases.
- as in appending to an array buffer
- ...has variable runtimes
- e.g., indexing into a linked list is $O(n)$, but $\Theta(i)$

Quick Sort

- Each level of splits takes $O(n)$ total runtime
- Typically, each split will cut the input array in (nearly) half
- Will need $\log (\mathrm{n})$ levels of splits
- No guarantees: Unlikely, but might accidentally always pick the lowest value as a pivot for each split.
- Might need as many as n levels of splits
- Runtime: O(n²)
- Expected Runtime: O(n•log(n))

Sequences

Immutable Sequence ADTs

- apply(idx: Int): A
- Get the element (of type A) at position idx.
- iterator: Iterator[A]
- Get access to view all elements in the seq, in order, once.
- length: Int
- Count the number of elements in the seq.

Mutable Sequence ADTs

- apply(idx: Int): A
- Get the element (of type A) at position idx.
- iterator: Iterator[A]
- Get access to view all elements in the seq, in order, once.
- length: Int
- Count the number of elements in the seq.
- insert(idx: Int, elem: A): Unit
- Insert the element at position idx with the value elem.
- remove(idx: Int): Unit
- Remove the element at position idx.

Runtime Cost for Appends

- $T(n)=$ insert cost + reserve cost $=\Theta(n)+\Theta(n)=\Theta(n)$
- Append runtime is Amortized O(1)
- Runtime for one append is $O(n)$
- Runtime for \underline{n} appends is $\Theta(n)$
- "Amortized" describes runtime over the long run.
- reserve is only called log(n) times (very infrequently)
- Not quite the same as the "average" case
- Average case is the expected runtime over any input
- Here, $\Theta(n)$ is the runtime.

Amortized \rightarrow Upfront costs paid off over time

Overview

Function	Array	LL by Index	LL by Pointer
apply	$\Theta(1)$	$\Theta(\mathrm{i})$	$\Theta(1)$
update	$\Theta(1)$	$\Theta(\mathrm{i})$	$\Theta(1)$
insert	$O(\mathrm{n})$	$\Theta(\mathrm{i})$	$\Theta(1)$
remove	$O(\mathrm{n})$	$\Theta(\mathrm{i})$	$\Theta(1)$
append	Amortized $O(1)$	$\Theta(1)$	$\Theta(1)$

Bubble Sort for Mutable Sequences

1. def sort(seq: mutable.Seq[Int]): Unit =
2. val $\mathrm{n}=$ seq.length
3. for(i $\leftarrow \mathrm{n}-2$ to 0 by $-1 ; \mathrm{j} \leftarrow \mathrm{i}$ to n$)$
\{
4. if(seq(j+1) < seq(j))
\{
5. \quad val temp $=\operatorname{seq}(j+1)$
6. $\operatorname{seq}(j+1)=\operatorname{seq}(j)$
7. $\operatorname{seq}(\mathrm{j})=$ temp
\} Is the runtime $T(n)=\Theta\left(n^{2}\right)$?
\} - What is the cost of seq(i+1) < seq(i)?
\}

- What is the cost of each seq(k)?

Bubble Sort for Immutable Sequences

```
1. def sort(seq: Seq[Int]): Seq[Int] =
    \{
2. val newSeq = seq.toArray
3. val \(\mathrm{n}=\) seq. length
4. for(i \(\leftarrow n-2\) to 0 by \(-1 ; j \leftarrow 0\) to i)
    \{
        if(newSeq(j+1) < newSeq(j))
        \{
            val temp = seq(j+1)
                \(\operatorname{seq}(j+1)=\operatorname{seq}(j)\)
8. \(\operatorname{seq}(j)=\) temp
        \}
    \} Is the runtime \(T(n)=\Theta\left(n^{2}\right)\) ?
9. return newSeq.toList
    - What is the cost of seq.toArray?
    - What is the cost of newSeq.toList?
```


Searching Sequences

```
1. def indexOf[T](seq: Seq[T], value: T, from: Int): Int = {
2. for(i}\leftarrow from 0 until seq.length) 
3. if(seq(i).equals(value)) { return i }
    }
4. return -1
    }
Expected runtime is T(n)=\Theta(n)
```

1. def count[T](seq: Seq[T], value: T): Int = \{
2. var count = 0; var i = indexOf(seq, value, 0)
3. while(i != -1) \{
4. count += 1; indexOf(seq, value, i+1)
\}
5. return count
\}
Expected runtime is $T(n)=\Theta(n)$

Recursion

Fibonacci Sequence Runtime

The runtime of a recursive function is easiest to represent with a recurrence relation

$$
\begin{aligned}
& \text { def fib(n: Int) }=\{ \\
& \text { if(n == } 0|\mid n==1)\{n\} \\
& \text { else }\{\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)\} \\
& \text { \} } \\
& T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\
T(n-1)+T(n-2)+\Theta(1) & \text { otherwise }\end{cases}
\end{aligned}
$$

(this specific recurrence has a closed form, but ask on Piazza)

Factorial

$$
\begin{gathered}
\text { def fact(n: Int): Long }=\{ \\
\text { if(n<=0) } \begin{array}{l}
\text { if }\} \\
\text { else }\{n * \text { fact }(\mathrm{n}-1)\}
\end{array} \\
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 0 \\
T(n-1)+\Theta(1) & \text { otherwise }\end{cases}
\end{gathered}
$$

What is the closed form?
How much space is used?

Tail-Recursive Factorial

```
def fact(n: Int): Long = {
    if(n <= 0) { 1 }
    else { n * fact(n-1) }
}
def fact(n: Int): Long = {
    var total = 1l
    for(i}\leftarrow1 to n) {
        total *= i
    }
    return total
}
```

The compiler can (sometimes) figure this out on its own!

Divide and Conquer

- Recursive Solutions
- Solve a problem building from solution(s) to smaller versions of the same problem.
- The Divide and Conquer Strategy
- Divide problem into smaller subproblem(s)
- Conquer subproblem(s) by solving recursively
- Combine solutions to subproblem(s) into final solution

Divide and Conquer

- Towers of Hanoi
- $\mathrm{n}=1$: Move disk directly
- $n>1$: Solve $n-1$ subproblem 2 times (Conquer)
- Factorial
- $\mathrm{n}=0$: 1
- $\mathrm{n}>0$:
- Compute (n-1)! (Conquer)
- Multiply by n (Merge)

No real "divide" step in any of these examples.

Merge Sort

- If the sequence has 1 or 0 values: Done!
- If $n>1$
- Divide: "Split" the sequence in half
- Conquer: Sort each half independently
- Combine: Merge halves together

Merge Sort Analysis

- Suppose data is a sequence of size n
- Assume n is a power of 2 to simplify analysis
- Divide: "Split" the sequence in half

$$
\begin{aligned}
& D(n)=\Theta(n) \\
& a=2, b=2, c=1 \\
& C(n)=\Theta(n)
\end{aligned}
$$

- Conquer: Sort left and right halves
- Combine: Merge sorted halves together

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq 1 \\ 2 \cdot T\left(\frac{n}{2}\right)+\Theta(n)+\Theta(n)=2 \cdot T\left(\frac{n}{2}\right)+\Theta(n) & \text { otherwise }\end{cases}
$$

Merge Sort: Recursion Tree

There are $\log (n)$ levels in the tree

At level i, there are 2^{i} tasks, each with runtime $\Theta\left(\frac{n}{2^{i}}\right)$

$$
\begin{aligned}
T(N) & =\sum_{i=0}^{\log (n)} \sum_{j=1}^{2^{i}} \Theta\left(\frac{n}{2^{i}}\right) \\
& =\sum_{i=0}^{\log (n)}\left(2^{i}-1+1\right) \Theta\left(\frac{n}{2^{i}}\right) \\
& =\sum_{i=0}^{\log (n)} 2^{i} \Theta\left(\frac{n}{2^{i}}\right) \\
& =\sum_{i=0}^{\log (n)} \Theta(n) \\
& =(\log (n)-0+1) \Theta(n) \\
& =\Theta(n) \log (n)+\Theta(n) \\
& =\Theta(n \log (n))
\end{aligned}
$$

Merge Sort: Inductive Analysis

- Base Case: $\mathrm{n}=1$

$$
T(n)=\Theta(1)=c^{\prime}
$$

- True for any $\mathrm{n}_{0}>1, \mathrm{c}>\mathrm{c}^{\prime}$

Merge Sort: Inductive Analysis

- Inductive step for step $\mathrm{n}>1$: assume for all $\mathrm{m}<\mathrm{n}$

$$
-T(m)=c \cdot m \log (m)
$$

- Now use that to show $T(n)=c \cdot n \log (n)$

$$
\begin{aligned}
T(n) & =T\left(\frac{n}{2}\right)+\Theta(n) \\
& \leq 2\left(c \frac{n}{2} \log \left(\frac{n}{2}\right)+\Theta(n)\right. \\
& =c n \log (n)-c n \log (2)+\Theta(n) \\
& \leq c n \log (n)-c n+\Theta(n) \\
& =c n \log (n)-c n+d n(\text { for some constant } d>0) \\
& \leq c n \log (n)(\text { as long as } c \geq d)
\end{aligned}
$$

Stacks and Queues

Stacks vs Queues

Stack

- push(item)
> Insert at end of list
- pop
, Remove from end of list
- top
- Retrieve end of list

Queue

- enqueue(item)
> Insert at end of list
- dequeue
, Remove from front of list
- front
, Retrieve front of list

Graphs

Edge Types

- Directed Edge
- Ordered pair of vertices (u, v)
- origin (u) \rightarrow destination (v)
- e.g., transmit bandwidth
- Undirected Edge
- Unordered pair of vertices (u, v)
- e.g., round-trip latency

- Directed Graph: All edges are directed
- Undirected Graph: All edges are undirected

Terminology

- Endpoints (end-vertices) of an edge
- U, V are the endpoints of a
- Edges incident on a vertex
- a, b, d are incident on V
- Adjacent Vertices
U, V are adjacent
- Degree of a vertex (\# of incident edges)
- X has degree 5
- Parallel Edges
- h, i are parallel
- Self-Loop
- jis a self-loop

- Simple Graph
- A graph without parallel edges or self-loops

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: $\mathbf{O (1)} \mathbf{+} \mathbf{O}(v e r t e x . i n c i d e n t E d g e s)$
- vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)
- (total cost to visit all out/in/incident edges)
- vertex.edgeTo: O(m)
- Space Used: O(n+m)

Add an Adjacency List

```
class DirectedGraphV3[LV, LE]
{
    def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge =
    {
        val edge = new Edge(label)
        edge._listNode = edges.append(edge)
        orig._outEdges.append(edge)
        dest._inEdges.append(edge)
        return edge
    }
    class Vertex(_label: LV){
        val _outEdgēs: LinkedList[Edge]
        val _inEdges: LinkedList[Edge]
        // ...
    }
}
```


Adjacency List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: $\mathbf{O}(\mathbf{d e g}($ vertex))
- vertex.outEdges: O(|outEdges|) to visit all outEdges
- Same for vertex.inEdges, vertex.incidentEdges
- vertex.edgeTo: O(|outEdges|)
- Space Used: O(n+m)

A few more terms...

- A subgraph \mathbf{S} of a graph \mathbf{G} is a graph where
- S's vertices are a subset of G's vertices
- S's edges are a subset of G's edges
- A spanning subgraph of \mathbf{G} is a subgraph that contains all of \mathbf{G} 's vertices

Spanning Subgraph

A few more terms...

- A graph is connected if there is a path between every pair of vertices.
- A connected component is a maximal connected subgraph of \mathbf{G}.
- Maximal means you can't add any new vertex without breaking the property.

Disconnected Graph

A few more terms...

- A spanning tree of a connected graph is a spanning subgraph that is a tree.
- not unique unless the graph is a tree.

Recall...

- Searching the maze with a Stack

Depth-First Search

- Try out every path, one at a time...
- ... repeatedly backtrack and try another
- Searching the maze with a Queue

Breadth-First Search

- Try out every path in parallel...
- ... repeatedly pick a path and expand it by one step

Depth-First Search

- DFS Marking Vertices UNVISITED: $O(\mid$ vertices $\mid)$
- DFS Marking Edges UNVISITED: $O(\mid$ edges $\mid)$
- DFS Vertex Loop:
- All Calls to DFSOne:

$$
O(\mid \text { vertices } \mid)
$$

$$
O\left(\sum_{v} 1+\operatorname{deg}(v)\right)
$$

$$
=O(\mid \text { vertices }|+| \text { edges } \mid))
$$

$O(\mid$ vertices $|+|$ edges $\mid)$

Breadth-First Search

- Primary Goals
- Visit every vertex in the graph in increasing order of distance from the starting vertex
- Construct a spanning tree for every connected component
- Side effect: Compute connected components
- Side effect: Compute paths between pairs of vertices
- Side effect: Determine if the graph is connected
- Side effect: Identify cycles
- Side effect: Identify shortest paths to the starting vertex
- Complete in time O(|vertices|+|edges|)
- Complete with memory overhead O(|vertices|)

Breadth-First Search

- BFS Marking Vertices UNVISITED:

$$
\begin{aligned}
& O(\mid \text { vertices } \mid) \\
& O(\mid \text { edges } \mid) \\
& O(\mid \text { vertices } \mid) \\
& O\left(\sum_{v} 1+\operatorname{deg}(v)\right) \\
& \quad=O(\mid \text { vertices }|+| \text { edges } \mid))
\end{aligned}
$$

- BFS Marking Edges UNVISITED
- BFS Vertex Loop:
- All connected components:
$O(\mid$ vertices $|+|$ edges $\mid)$

DFS vs BFS

Application	DFS	BFS
Spanning Trees		
Connected Components		
Paths/Connectivity		
Cycles		
Shortest Paths		
Articulation Points		

