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Edge List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(1) + O(vertex.incidentEdges)
● vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)

– (total cost to visit all out/in/incident edges)
● vertex.edgeTo: O(m)
● Space Used: O(n+m)
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Add an Adjacency List
class DirectedGraphV3[LV, LE]
{  
  def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge = 
  {
    val edge = new Edge(label)
    edge._listNode = edges.append(edge)
    orig._outEdges.append(edge)
    dest._inEdges.append(edge)
    return edge
  }
  class Vertex(_label: LV){
    val _outEdges: LinkedList[Edge]
    val _inEdges: LinkedList[Edge]
    // …
  }
}
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Adjacency List Summary
● addEdge, addVertex: O(1)
● removeEdge: O(1)
● removeVertex: O(deg(vertex))
● vertex.outEdges: O(|outEdges|) to visit all outEdges

– Same for vertex.inEdges, vertex.incidentEdges
● vertex.edgeTo: O(|outEdges|)
● Space Used: O(n+m)
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Binary Search Trees
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Tree Terminology
● Rooted directed tree

– root is the topmost vertex
– EmptyTree contains 0 vertices, null for mutable tree.

● Parent references one or more children
– leaf vertex: Vertex with zero children

● Depth of a vertex
– Number of edges in the path from the root to the vertex

● Level of a vertex
– Depth + 1
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Tree Terminology
● The size of a tree

– the number of vertices
– Typically represented as n

● The depth of a tree - the maximum depth of any node
– Typically represented as d

● The height of a vertex
– The maximum number of edges from vertex to any leaf
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Tree Terminology
● A binary tree is a tree where

– every vertex has ≤2 children
● A full binary tree is a tree where

– all leaf vertices are at the lowest depth of the tree
– Every vertex has either 0 or 2 children

● Depth of a full tree: 
● Size of a full tree:
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Tree Traversals
● Pre-order (top-down)

– visit root, visit left subtree, visit right subtree
● In-order

– visit left subtree, visit root, visit right subtree
● Post-order (bottom-up)

– visit left subtree, visit right subtree, visit root
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Computing the height of a tree
● Height (depth) of a tree = height of the root
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Priority Queues / Heaps
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Priority Queue
● PriorityQueue[A: Ordering]

– enqueue(v: A): Unit
● Insert value v into the priority queue

– head: A
● Retrieve the highest-priority value in the priority queue

– dequeue: A
● Remove the highest-priority value from the priority 

queue
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(Binary) Heap
● Idea: Keep the priority queue “kinda” sorted

– Keep larger items closer to the front of the list
– Trade off between...

● Moving larger elements forward
● Leaving some elements out-of-order

● Challenge: How track which elements are already sorted?
● Inspiration: Trees
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(Binary) Heaps
● A (binary) heap is a tree-like structure with the properties:

– A complete (binary) tree
– Each vertex is “non-increasing” relative to its children

● Strictly decreasing if no duplicates present
● A complete (binary) tree is a tree where

– Each node has at most 2 children
– Every level except for the last is full

● Nodes in the last level are as far left as possible
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Heaps
● What is the max depth of a binary heap?

– Level 1: 1 value
– Level 2: up to 2 values
– Level 3: up to 4 values
– Level 4: up to 8 values
– Level i: up to 2i values
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Heap Methods
● isEmpty: Boolean
● length: Int
● head: A
● pushHeap(elem: A)
● popHeap: A
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Heap Methods: pushHeap
● Idea: Insert into the next available location and then fix up

– Insert at next available location (call it current)
– While current isn’t root and parent < current

● Swap current and parent
● Repeat with current = parent
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Heap Methods: popHeap
● Idea: Fill root with value in last filled location and then fix down

– Start with the root (call it current)
– While current isn’t a leaf and there’s a  child < current

● Swap current and the larger child
● Repeat with current = child
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Storing Heaps in Memory
● Observations:

– Each layer has a maximum size
– Each layer grows left-to-right
– Only the last layer grows

● Idea: Use an array to store the heap
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Analysis
● pushHeap

– Append to end of ArrayBuffer
● Amortized O(1)

– fixUp
● log(n) steps, each O(1) = O(log(n))

● popHeap
– Remove end of ArrayBuffer

● O(1)
– fixDown

● log(n) steps, each O(1) = O(log(n))

O(log(n)) amortized
O(n) worst-case

O(log(n))
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Binary Search Trees
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Binary Search Tree
● Store key/value pairs (T = (K, V) )

– Require an Ordering[K]
● Enforce constraints:

– No duplicate keys
– For every vertex vL in the left subtree of v1, 

● vL.key < v1.key
– For every vertex vR in the right subtree of v1, 

● vR.key > v1.key
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BST Mutations

Operation Runtime

find

insert

remove

O(d)

O(d)

O(d)
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Tree Depth vs Size

A

B C

D E F G

d = O(log(n))

A
B

C
D

E
F

G

d = O(n)

height(left) ≈ height(right) height(left)  height(right)≪
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“Balanced” Trees
● Faster search: Want height(left) ≈ height(right)

– Make it more precise: |height(left) - height(right)| ≤ 1
– (left, right height differ by at most 1)

● Question: How do we keep the tree balanced?
– Option 1: Keep left/right subtrees within +/- 1 of each other

● Add a field to track the “imbalance factor”
– Option 2: Ensure leaves are at a minimum depth of d / 2

● Add a designation marking each node as red or black
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Rebalancing Trees

A

B

X Y Z
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Rebalancing Trees

A

B

X Y Z

Rotate(A, B)
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AVL Trees
● An AVL tree (Adelson-Velsky and Landis) is a BST where every 

node is “depth-balanced”
– |depth(left subtree) - depth(right subtree)| < 1

● define balance(v) = height(v.right) - height(v.left)
– Maintain balance(v) ∈ { -1, 0, 1 }

● balance(v) = 0 → “v is balanced”
● balance(v) = -1 → “v is left-heavy”
● balance(v) = 1 → “v is right-heavy”

If the balance constraint is obeyed, the tree must have Ω(2d) nodes (d = log(n))
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Maintaining Balance
● Enforcing height-balance is too strict

– May require “unnecessary” rotations
● Weaker restriction:

– Balance the depth of EmptyTree nodes
– If a, b are EmptyTree nodes: 

● depth(a) ≥ (depth(b) ÷ 2)
or

● depth(b) ≥ (depth(a) ÷ 2)
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d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2 d/2

 

Balancing Empty Node Depth

A

B

d d

d-1

d/2

d/2

 

Must be full
(2 d/2⌈ ⌉ nodes)

d/2 = log(n)
d = 2log(n) = O(log(n))
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Red-Black Trees
● Color each node red or black

1) # of black nodes from each empty to root must be identical
2) Parent of a red node must be black

● On Insertion (or deletion)
– Inserted node is red (won’t change # of black nodes)
– “Repair” violations of rule 2 by rotating or recoloring

● Each repair guarantees rule 1 is preserved
● Each repair creates at most 1 new violation of rule 2 at the parent.
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TreeSet[A: Ordering]
● add(a: A): Unit

– Insert a into the balanced binary search tree
● apply(a: A): Boolean

– Find a in the binary search tree, return true if found
● remove(a: A): Unit

– Remove a from the binary search tree

O(log(n))

O(log(n))

O(log(n))
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TreeMap[K: Ordering, V]
● put(k: K, v: V): Unit

– Insert the pair (k,v) into the balanced binary search tree 
according to the ordering on k.

● apply(k: K): V
– Find k in the binary search tree, return the matching v.

● remove(k: K): Unit
– Remove k from the binary search tree.

● range(from: K, until: K): TreeMap[K, V]
– Return a sub-map containing only keys in the range [from,until)

O(log(n))

O(log(n))

O(log(n))

O(log(n)+|range|)
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Hash Tables
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Hash Table with Chaining
● Create an array of size N
● Pick an O(1) function h(k) to assign each record to [0,N)

– A record with key k can only be stored in bucket h(k)
– Use linked lists if the bin is occupied
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Hash Table with Chaining

A B C D Y ZP ......Athos D’Artagnan Porthos

∅ ∅ ∅ ∅ ∅ ∅∅ ......

∅

Aramis
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Picking a Lookup Function
● Desirable Features for h(x) 

– Fast
● needs to be O(1)

– “Unique”
● As few duplicate bins as possible
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Hash Functions
● Examples

– SHA256 ← used by GIT
– MD5, BCRYPT ← used by unix login, apt
– MurmurHash3 ← used by Scala

● hash(x) is pseudorandom
1) hash(x) ~ uniform random value in [0, INT_MAX)
2) hash(x) always returns the same value
3) hash(x) uncorrelated with hash(y) for x ≠ y
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Lookup Table
● We want fewer than INT_MAX buckets
● Store a record with key k in bucket h(k) % N
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Modulus

0 1 2 3 5 64

0           1            2           3            4            5           6

7           8            9          10          11          12         13

14         15          16         17          18          19         20

h(k) =
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Iterating over a hash table
● Runtime

– Visit every hash bucket
● O(N)

– Visit every element in every bucket
● O(n)

= O(N + n)
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Hash Functions + Buckets

Everything is:

Idea: Make α a constant

Let’s call                    the load factor.

Fix an               and start requiring that 

What happens when the user inserts n = N x αmax + 1 records ?
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Rehashing
● Resize the array from Nold to Nnew.

– Element x moves from hash(x) % Nold to hash(x) % Nnew

● Runtime?
– Allocate new array: O(1)
– Visit every hash bucket: O(Nold)
– Hash and copy each element to the new array: O(n)
– Free the old array: O(1)
– O(1) + O(Nold) + O(n) + O(1) = O(Nold+n)
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Rehashing
● Whenever α > αmax, rehash to double size

– Contrast with ArrayBuffer
● Starting with N buckets, after n insertions..

– Rehash at n1 = αmax x N: From N to 2N Buckets
– Rehash at n2 = αmax x 2N: From 2N to 4N Buckets
– Rehash at n3 = αmax x 4N: From 4N to 8N Buckets
– ...
– Rehash at nj = αmax x 2jN: From 2j-1N to 2jN Buckets
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Number of Rehashes
With n insertions...
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Total Work

Total work after n insertions...

The i-th rehashing:

Rehashes required:

Work per insertion:
(ammortized cost)
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HashSet[A]
● add(a: A): Unit

– Compare all elements in bucket h(a) % N to a.  If a match 
is not present, insert a at the head.

● apply(a: A): Boolean
– Compare all elements in bucket h(a) % N to a. If a match is 

found, return true.
● remove(a: A): Unit

– Compare all elements in bucket h(a) % N to a. If a match is 
found, remove the matched element.

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)
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HashMap[K, V]
● put(k: K, v: V): Unit

– Compare the key of all elements in bucket h(k) % N to k.  If a match 
is present, remove it.  Insert (k, v) at the head

● apply(k: K): V
– Compare the key of all elements in bucket h(k) % N to k.  If a match 

is found, return the corresponding value.
● remove(a: A): Unit

– Compare the key of all elements in bucket h(k) % N to k. If a match is 
found, remove the matching element.

● NO range operation

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)

expected: O(1)
worst-case: O(N)
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Variations
● Hash Table with Chaining

– ... but re-use empty hash buckets instead of chaining
● Hash Table with Open Addressing
● Cuckoo Hashing (Double Hashing)

– ... but avoid bursty rehashing costs
● Dynamic Hashing

– ... but avoid O(N) iteration cost
● Linked Hash Table
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Open Addressing
● insert(X)

– While bucket hash(X)+i %N is occupied, i = i + 1
– Insert at bucket hash(X)+i %N

● apply(X)
– While bucket hash(X)+i %N is occupied

● If the element at bucket hash(X)+i %N is X, return it
● Otherwise i = i + 1 

– Element not found
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Open Addressing
● Linear Probing: Offset to hash(X)+ci for some constant c
● Quadratic Probing: Offset to hash(X)+ci2 for some constant c 
● Follow Probing Strategy to find the next bucket

● Runtime Costs
– Chaining: Dominated by following chain
– Open Addressing: Dominated by probing

● With a low enough αmax, operations still O(1)
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Cuckoo Hashing
● Use two hash functions: hash1, hash2

– Each record is stored at one of the two
● insert(x)

– If both buckets are available: pick at random
– If one bucket is available: insert record there
– If neither bucket is available, pick one at random

● “Displace” the record there, move it to the other bucket
● Repeat displacement until an empty bucket is found

apply(x) and remove(x) is guaranteed O(1)
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Linked Hash Table
● Iteration over Hash Table is O(N + n)

– Can be much slower than O(n)
● Idea: Connect entries together in a Doubly Linked List
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Linked Hash Table

A B C D Y ZP ......Athos

......∅∅ ∅ ∅∅ ∅ ∅∅ ∅ ∅ ∅∅ ∅ ∅∅ ∅∅ ∅

head tail

Porthos

Aramis

∅∅
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Linked Hash Table
● O(n) Iteration
● apply(x)

– O(1) increase in cost
● insert(x)

– O(1) increase in cost
● remove(x)

– O(1) increase in cost
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Lossy Sets / Bloom Filters
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“Lossy Sets”
● Set[A]

– add(a: A): Insert a into the set
– apply(a: A): Return true if a is in the set

add(A) apply(A)

● What if we didn’t need apply to be perfect?
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Lossy Sets
● LossySet[A]

– add(a: A): Insert a into the set.
– apply(a: A): 

● If a is in the set, always return true
● If a is not in the set, usually return false

– Is allowed to return true, even if a is not in the set
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Bloom Filters

class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A]
{
  val bits = new Array[Boolean](_size)

  def add(a: A): Unit = {
    for(i <- 0 until _k) { bits( ithHash(a, i) % _size ) = true }
  }

  def apply(a: A): Boolean = {
    for(i <- 0 until _k) { 
      if( !bits( ithHash(a, i) % _size ) { return false; }
    }
    return true
  }
}
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Bloom Filter Parameters
● _size

– Intuitively: More space, fewer collisions
● _k

– Intuitively: more hash functions means...
● ...more chances for one of b’s bits to be unset.
● ...more bits set = higher chance of collisions.

To preserve a constant false-positive rate:
   Grow _size as O(n)
   Value of _k is fixed for a given size.
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Bloom Filters: Analysis
● N/n = 5   →   ~10% collision chance
● N/n = 10 →   ~1% collision chance

● 10 bits vs 
– 32 bits for one Int (3 to 1 savings)
– 64 bits for a Double/Long (6 to 1 savings)
– ~8000 bits for a full record (800 to 1 savings)
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