CSE 250 Lecture 38

Final Review Day 2

Fall 2022

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(1) + O(vertex.incidentEdges)
- vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)
 - (total cost to visit all out/in/incident edges)
- vertex.edgeTo: O(m)
- Space Used: O(n+m)

Add an Adjacency List

```
class DirectedGraphV3[LV, LE]
  def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge =
    val edge = new Edge(label)
    edge. listNode = edges.append(edge)
    orig. outEdges.append(edge)
    dest. inEdges.append(edge)
    return edge
  }
  class Vertex( label: LV){
    val outEdges: LinkedList[Edge]
    val inEdges: LinkedList[Edge]
    // ...
```

Adjacency List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: O(deg(vertex))
- vertex.outEdges: **O(|outEdges|)** to visit all outEdges
 - Same for vertex.inEdges, vertex.incidentEdges
- vertex.edgeTo: O(|outEdges|)
- Space Used: O(n+m)

Binary Search Trees

Tree Terminology

- Rooted directed tree
 - **root** is the topmost vertex
 - EmptyTree contains 0 vertices, null for mutable tree.
- **Parent** references one or more **child**ren
 - leaf vertex: Vertex with zero children
- **Depth** of a vertex
 - Number of edges in the path from the root to the vertex
- Level of a vertex
 - Depth + 1

Tree Terminology

- The **size** of a tree
 - the number of vertices
 - Typically represented as **n**
- The **depth** of a tree the maximum depth of any node
 - Typically represented as **d**
- The **height** of a vertex
 - The maximum number of edges from vertex to any leaf

Tree Terminology

- A **binary tree** is a tree where
 - every vertex has ≤ 2 children
- A full binary tree is a tree where
 - all leaf vertices are at the lowest depth of the tree
 - Every vertex has either 0 or 2 children
- Depth of a full tree: d = d
- Size of a full tree: $n = \sum_{i=0}^{i} 2^i = 2^{d+1} 1 = O(2^d)$

Tree Traversals

- Pre-order (top-down)
 - visit **root**, visit **left** subtree, visit **right** subtree
- In-order
 - visit **left** subtree, visit **root**, visit **right** subtree
- Post-order (bottom-up)
 - visit left subtree, visit right subtree, visit root

Computing the height of a tree

• Height (depth) of a tree = height of the root

$$d(\texttt{root}) = \begin{cases} -1 & \text{if the tree is empty} \\ 1 + max(d(\texttt{root.left}), d(\texttt{root.right})) & \text{otherwise} \end{cases}$$

Priority Queues / Heaps

Priority Queue

- PriorityQueue[A: Ordering]
 - enqueue(v: A): Unit
 - Insert value v into the priority queue
 - head: A
 - Retrieve the highest-priority value in the priority queue
 - dequeue: A
 - Remove the highest-priority value from the priority queue

(Binary) Heap

- Idea: Keep the priority queue "kinda" sorted
 - Keep larger items closer to the front of the list
 - Trade off between...
 - Moving larger elements forward
 - Leaving some elements out-of-order
- **Challenge**: How track which elements are already sorted?
- Inspiration: Trees

(Binary) Heaps

- A (binary) heap is a tree-like structure with the properties:
 - A complete (binary) tree
 - Each vertex is "non-increasing" relative to its children
 - Strictly decreasing if no duplicates present
- A complete (binary) tree is a tree where
 - Each node has at most 2 children
 - Every level except for the last is full
 - Nodes in the last level are as far left as possible

Heaps

- What is the max depth of a binary heap?
 - Level 1: 1 value
 - Level 2: up to 2 values
 - Level 3: up to 4 values
 - Level 4: up to 8 values
 - Level i: up to 2ⁱ values

$$n = \sum_{i=1}^{\ell_{max}} 2^i = 2^{\ell_{max}+1} - 1$$

$$\ell_{max} = \log(n+1) - 1$$

Heap Methods

- isEmpty: Boolean
- length: Int
- head: A
- pushHeap(elem: A)
- popHeap: A

Heap Methods: pushHeap

- Idea: Insert into the next available location and then fix up
 - Insert at next available location (call it current)
 - While current isn't root and parent < current</p>
 - Swap current and parent
 - Repeat with current = parent

Heap Methods: popHeap

- Idea: Fill root with value in last filled location and then fix down
 - Start with the root (call it **current**)
 - While current isn't a leaf and there's a child < current</p>
 - Swap current and the larger child
 - Repeat with current = child

Storing Heaps in Memory

• Observations:

- Each layer has a maximum size
- Each layer grows left-to-right
- Only the last layer grows
- Idea: Use an array to store the heap

Analysis

- pushHeap
 - Append to end of ArrayBuffer
 - Amortized O(1)
 - fixUp
 - log(n) steps, each O(1) = O(log(n))
- popHeap
 - Remove end of ArrayBuffer
 - O(1)
 - fixDown
 - $\log(n)$ steps, each $O(1) = O(\log(n))$

O(log(n)) amortized O(n) worst-case

Binary Search Trees

Binary Search Tree

- Store key/value pairs (T = (K, V))
 - Require an Ordering[K]
- Enforce constraints:
 - No duplicate keys
 - For every vertex v_{L} in the left subtree of v_{1} ,
 - v_L .key < v_1 .key
 - For every vertex v_R in the right subtree of v_1 ,
 - v_R .key > v_1 .key

BST Mutations

Operation	Runtime
find	O(d)
insert	O(d)
remove	O(d)

Tree Depth vs Size

height(left) ≈ height(right)

height(left) *≪* height(right)

d = O(log(n))

"Balanced" Trees

- Faster search: Want height(left) \approx height(right)
 - Make it more precise: $|height(left) height(right)| \le 1$
 - (left, right height differ by at most 1)
- **Question**: How do we keep the tree balanced?
 - Option 1: Keep left/right subtrees within +/- 1 of each other
 - Add a field to track the "imbalance factor"
 - Option 2: Ensure leaves are at a minimum depth of **d / 2**
 - Add a designation marking each node as red or black

Rebalancing Trees

Rebalancing Trees

Rotate(A, B)

AVL Trees

- An AVL tree (<u>A</u>delson-<u>V</u>elsky and <u>L</u>andis) is a BST where every node is "depth-balanced"
 - |depth(left subtree) depth(right subtree)| < 1
- define balance(v) = height(v.right) height(v.left)
 - Maintain balance(v) \in { -1, 0, 1 }
 - balance(v) = $0 \rightarrow$ "v is balanced"
 - balance(v) = $-1 \rightarrow$ "v is left-heavy"
 - balance(v) = $1 \rightarrow "v$ is right-heavy"

If the balance constraint is obeyed, the tree <u>must</u> have $\Omega(2^d)$ nodes (d = log(n))

Maintaining Balance

- Enforcing height-balance is too strict
 - May require "unnecessary" rotations
- Weaker restriction:
 - Balance the depth of EmptyTree nodes
 - If a, b are EmptyTree nodes:
 - depth(a) \geq (depth(b) \div 2) or
 - depth(b) \geq (depth(a) \div 2)

Balancing Empty Node Depth

Fall 2022

The University at Buffalo, SUNY

30/61

Red-Black Trees

- Color each node red or black
 - 1) # of black nodes from each empty to root must be identical
 - 2) Parent of a red node must be black
- On Insertion (or deletion)
 - Inserted node is red (won't change # of black nodes)
 - "Repair" violations of rule 2 by rotating or recoloring
 - Each repair guarantees rule 1 is preserved
 - Each repair creates at most 1 new violation of rule 2 at the parent.

TreeSet[A: Ordering]

• add(a: A): Unit

O(log(n)) - Insert **a** into the balanced binary search tree

• apply(a: A): Boolean

O(log(n)) - Find a in the binary search tree, return true if found

remove(a: A): Unit

O(log(n)) - Remove **a** from the binary search tree

TreeMap[K: Ordering, V]

• put(k: K, v: V): Unit

- **O(log(n))** Insert the pair (**k**,**v**) into the balanced binary search tree according to the ordering on **k**.
 - apply(k: K): V
- O(log(n)) Find k in the binary search tree, return the matching v.

remove(k: K): Unit

- O(log(n)) Remove k from the binary search tree.
 - range(from: K, until: K): TreeMap[K, V]

Return a sub-map containing only keys in the range [from,until)
 O(log(n)+|range|)

Hash Tables

Hash Table with Chaining

- Create an array of size N
- Pick an O(1) function h(k) to assign each record to [0,N)
 - A record with key k can only be stored in bucket h(k)
 - Use linked lists if the bin is occupied

Hash Table with Chaining

Athos	В	С	D'Artagnan	 Porthos	 Y	Ζ
	Ø	Ø	Ø	 Ø	 Ø	Ø

Picking a Lookup Function

- Desirable Features for h(x)
 - Fast
 - needs to be O(1)
 - "Unique"
 - As few duplicate bins as possible

Hash Functions

- Examples
 - SHA256 \leftarrow used by GIT
 - MD5, BCRYPT ← used by unix login, apt
 - MurmurHash3 ← used by Scala
- hash(x) is pseudorandom
 - 1) hash(x) ~ uniform random value in [0, INT_MAX)
 - 2) hash(x) always returns the same value
 - 3) hash(x) uncorrelated with hash(y) for $x \neq y$

Lookup Table

- We want fewer than INT_MAX buckets
- Store a record with key k in bucket h(k) % N

Modulus

Iterating over a hash table

- Runtime
 - Visit every hash bucket
 - O(N)
 - Visit every element in every bucket
 - O(n)
 - = O(N + n)

Hash Functions + Buckets

Everything is:
$$O\left(\frac{n}{N}\right)$$
 Let's call $\alpha = \frac{n}{N}$ the load factor.

Idea: Make α a constant

Fix an α_{max} and start requiring that $\alpha \leq \alpha_{max}$

What happens when the user inserts $n = N \times \alpha_{max} + 1$ records ?

Fall 2022

©Oliver Kennedy, Eric Mikida, Andrew Hughes The University at Buffalo, SUNY

Rehashing

- Resize the array from N_{old} to N_{new} .
 - Element x moves from hash(x) % N_{old} to hash(x) % N_{new}
- Runtime?
 - Allocate new array: O(1)
 - Visit every hash bucket: **O(N**_{old})
 - Hash and copy each element to the new array: **O(n)**
 - Free the old array: O(1)
 - $O(1) + O(N_{old}) + O(n) + O(1) = O(N_{old}+n)$

Rehashing

- Whenever $\alpha > \alpha_{max}$, rehash to double size
 - Contrast with ArrayBuffer
- Starting with <u>N</u> buckets, after <u>n</u> insertions..
 - Rehash at $n_1 = \alpha_{max} \times N$: From N to 2N Buckets
 - Rehash at $n_2 = \alpha_{max} \times 2N$: From 2N to 4N Buckets
 - Rehash at $n_3 = \alpha_{max} \times 4N$: From 4N to 8N Buckets
 - ...
 - Rehash at $n_j = \alpha_{max} \times 2^j N$: From $2^{j-1}N$ to $2^j N$ Buckets

Number of Rehashes

With n insertions...

$$n = 2^{j} \alpha_{max}$$

$$2^{j} = \frac{n}{\alpha_{max}}$$

$$j = \log\left(\frac{n}{\alpha_{max}}\right)$$

$$j = \log(n) - \log(\alpha_{max})$$

$$j = O(\log(n))$$

Total Work

Rehashes required:

The i-th rehashing:

$$O(log(n))$$

 $O(2^iN)$

Total work after n insertions...

$$\sum_{i=0}^{O(\log(n))} O(2^{i}N) = O\left(\sum_{i=0}^{O(\log(n))} 2^{i} + \sum_{i=0}^{O(\log(n))} N\right)$$
$$= O\left(2^{O(\log(n)+1)} - 1 + O(\log(n)N)\right)$$
$$= O\left(n + N\log(n)\right)$$
$$= O\left(\frac{n + N\log(n)}{n}\right) = O\left(\frac{n}{n} + \frac{N\log(n)}{n}\right) = O(1)$$

Work per insertion: (ammortized cost)

© Oliver Kennedy, Eric Mikida, Andrew Hughes The University at Buffalo, SUNY

HashSet[A]

add(a: A): Unit

expected: O(1) worst-case: O(N)

 Compare all elements in bucket h(a) % N to a. If a match is not present, insert a at the head.

apply(a: A): Boolean

expected: O(1) worst-case: O(N)

- Compare all elements in bucket h(a) % N to a. If a match is found, return true.
- remove(a: A): Unit

expected: O(1) worst-case: O(N)

 Compare all elements in bucket h(a) % N to a. If a match is found, remove the matched element.

HashMap[K, V]

• put(k: K, v: V): Unit

expected: O(1) worst-case: O(N)

 Compare the key of all elements in bucket h(k) % N to k. If a match is present, remove it. Insert (k, v) at the head

apply(k: K): V

expected: O(1) worst-case: O(N)

- Compare the key of all elements in bucket h(k) % N to k. If a match is found, return the corresponding value.
- remove(a: A): Unit

expected: O(1) worst-case: O(N)

- Compare the key of all elements in bucket h(k) % N to k. If a match is found, remove the matching element.
- NO range operation

Variations

Hash Table with Chaining

- ... but re-use empty hash buckets instead of chaining
 - Hash Table with Open Addressing
 - Cuckoo Hashing (Double Hashing)
- ... but avoid bursty rehashing costs

Dynamic Hashing

- ... but avoid O(N) iteration cost
 - Linked Hash Table

Open Addressing

- insert(X)
 - While bucket hash(X)+i %N is occupied, i = i + 1
 - Insert at bucket hash(X)+i %N
- apply(X)
 - While bucket hash(X)+i %N is occupied
 - If the element at bucket hash(X)+i %N is X, return it
 - Otherwise i = i + 1
 - Element not found

Open Addressing

- **Linear Probing**: Offset to hash(X)+ci for some constant c
- **Quadratic Probing**: Offset to hash(X)+ci² for some constant c
- Follow Probing Strategy to find the next bucket
- Runtime Costs
 - Chaining: Dominated by following chain
 - Open Addressing: Dominated by probing
- With a low enough α_{max} , operations still O(1)

Cuckoo Hashing

- Use two hash functions: hash₁, hash₂
 - Each record is stored at one of the two
- insert(x)
 - If both buckets are available: pick at random
 - If one bucket is available: insert record there
 - If neither bucket is available, pick one at random
 - "Displace" the record there, move it to the other bucket
 - Repeat displacement until an empty bucket is found

apply(x) and remove(x) is guaranteed O(1)

Linked Hash Table

- Iteration over Hash Table is O(N + n)
 - Can be much slower than O(n)
- Idea: Connect entries together in a Doubly Linked List

Linked Hash Table

Linked Hash Table

- O(n) Iteration
- apply(x)
 - O(1) increase in cost
- insert(x)
 - O(1) increase in cost
- remove(x)
 - O(1) increase in cost

Lossy Sets / Bloom Filters

"Lossy Sets"

- Set[A]
 - add(a: A): Insert a into the set
 - **apply(a: A)**: Return true if **a** is in the set

• What if we didn't need apply to be perfect?

Lossy Sets

- LossySet[A]
 - add(a: A): Insert a into the set.
 - apply(a: A):
 - If **a** is in the set, <u>always</u> return true
 - If **a** is not in the set, <u>usually</u> return false
 - Is allowed to return true, even if **a** is not in the set

Bloom Filters

```
class BloomFilter[A]( size: Int, k: Int) extends LossySet[A]
 val bits = new Array[Boolean]( size)
 def add(a: A): Unit = {
   for(i <- 0 until k) { bits( ithHash(a, i) % size ) = true }</pre>
  }
 def apply(a: A): Boolean = {
   for(i <- 0 until k) {
      if( !bits( ithHash(a, i) % size ) { return false; }
    }
    return true
```

Bloom Filter Parameters

- _size
 - Intuitively: More space, fewer collisions
- _k
 - Intuitively: more hash functions means...
 - ...more chances for one of **b**'s bits to be unset.
 - ...more bits set = higher chance of collisions.

To preserve a constant false-positive rate: Grow _size as O(n) Value of _k is fixed for a given size.

Bloom Filters: Analysis

- N/n = 5 \rightarrow ~10% collision chance
- N/n = 10 \rightarrow ~1% collision chance

- 10 <u>bits</u> vs
 - 32 bits for one Int (3 to 1 savings)
 - 64 bits for a Double/Long (6 to 1 savings)
 - ~8000 bits for a full record (800 to 1 savings)