CSE 250
 Lecture 38

Final Review

Day 2

Edge List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: $\mathbf{O (1)} \mathbf{+} \mathbf{O}(v e r t e x . i n c i d e n t E d g e s)$
- vertex.outEdges, vertex.inEdges, vertex.incidentEdges: O(m)
- (total cost to visit all out/in/incident edges)
- vertex.edgeTo: O(m)
- Space Used: O(n+m)

Add an Adjacency List

```
class DirectedGraphV3[LV, LE]
{
    def addEdge(orig: Vertex, dest: Vertex, label: LE): Edge =
    {
        val edge = new Edge(label)
        edge._listNode = edges.append(edge)
        orig._outEdges.append(edge)
        dest._inEdges.append(edge)
        return edge
    }
    class Vertex(_label: LV){
        val _outEdgēs: LinkedList[Edge]
        val _inEdges: LinkedList[Edge]
        // ...
    }
}
```


Adjacency List Summary

- addEdge, addVertex: O(1)
- removeEdge: O(1)
- removeVertex: $\mathbf{O}(\mathbf{d e g}($ vertex))
- vertex.outEdges: O(|outEdges|) to visit all outEdges
- Same for vertex.inEdges, vertex.incidentEdges
- vertex.edgeTo: O(|outEdges|)
- Space Used: O(n+m)

Binary Search Trees

Tree Terminology

- Rooted directed tree
- root is the topmost vertex
- EmptyTree contains 0 vertices, null for mutable tree.
- Parent references one or more children
- Ieaf vertex: Vertex with zero children
- Depth of a vertex
- Number of edges in the path from the root to the vertex
- Level of a vertex
- Depth + 1

Tree Terminology

- The size of a tree
- the number of vertices
- Typically represented as \mathbf{n}
- The depth of a tree - the maximum depth of any node
- Typically represented as d
- The height of a vertex
- The maximum number of edges from vertex to any leaf

Tree Terminology

- A binary tree is a tree where
- every vertex has ≤ 2 children
- A full binary tree is a tree where
- all leaf vertices are at the lowest depth of the tree
- Every vertex has either 0 or 2 children
- Depth of a full tree: d
- Size of a full tree: $n=\sum_{i=0} 2^{i}=2^{d+1}-1=O\left(2^{d}\right)$

Tree Traversals

- Pre-order (top-down)
- visit root, visit left subtree, visit right subtree
- In-order
- visit left subtree, visit root, visit right subtree
- Post-order (bottom-up)
- visit left subtree, visit right subtree, visit root

Computing the height of a tree

- Height (depth) of a tree $=$ height of the root

$$
d(\text { root })= \begin{cases}-1 & \text { if the tree is empty } \\ 1+\max (d(\text { root.left }), d(\text { root.right })) & \text { otherwise }\end{cases}
$$

Priority Queues / Heaps

Priority Queue

- PriorityQueue[A: Ordering]
- enqueue(v: A): Unit
- Insert value v into the priority queue
- head: A
- Retrieve the highest-priority value in the priority queue
- dequeue: A
- Remove the highest-priority value from the priority queue

(Binary) Heap

- Idea: Keep the priority queue "kinda" sorted
- Keep larger items closer to the front of the list
- Trade off between...
- Moving larger elements forward
- Leaving some elements out-of-order
- Challenge: How track which elements are already sorted?
- Inspiration: Trees

(Binary) Heaps

- A (binary) heap is a tree-like structure with the properties:
- A complete (binary) tree
- Each vertex is "non-increasing" relative to its children
- Strictly decreasing if no duplicates present
- A complete (binary) tree is a tree where
- Each node has at most 2 children
- Every level except for the last is full
- Nodes in the last level are as far left as possible

Heaps

- What is the max depth of a binary heap?
- Level 1: 1 value
- Level 2: up to 2 values
- Level 3: up to 4 values
- Level 4: up to 8 values
- Level i: up to 2^{i} values

$$
n=\sum_{i=1}^{\ell_{\max }} 2^{i}=2^{\ell_{\max }+1}-1 \quad \quad \ell_{\max }=\log (n+1)-1
$$

Heap Methods

- isEmpty: Boolean
- length: Int
- head: A
- pushHeap(elem: A)
- popHeap: A

Heap Methods: pushHeap

- Idea: Insert into the next available location and then fix up
- Insert at next available location (call it current)
- While current isn't root and parent < current
- Swap current and parent
- Repeat with current = parent

Heap Methods: popHeap

- Idea: Fill root with value in last filled location and then fix down
- Start with the root (call it current)
- While current isn't a leaf and there's a child < current
- Swap current and the larger child
- Repeat with current = child

Storing Heaps in Memory

- Observations:
- Each layer has a maximum size
- Each layer grows left-to-right
- Only the last layer grows
- Idea: Use an array to store the heap

Analysis

- pushHeap
- Append to end of ArrayBuffer

O(log(n)) amortized O(n) worst-case

- Amortized O(1)
- fixUp
- $\log (n)$ steps, each $O(1)=O(\log (n))$
- popHeap
- Remove end of ArrayBuffer
- $\mathrm{O}(1)$
$O(\log (n))$
- fixDown
- $\log (n)$ steps, each $O(1)=O(\log (n))$

Binary Search Trees

Binary Search Tree

- Store key/value pairs ($\mathrm{T}=(\mathrm{K}, \mathrm{V})$)
- Require an Ordering[K]
- Enforce constraints:
- No duplicate keys
- For every vertex v_{L} in the left subtree of v_{1},
- v_{L}.key < v_{1}.key
- For every vertex v_{R} in the right subtree of v_{1},
- V_{R}.key $>\mathrm{v}_{1}$.key

BST Mutations

Operation	Runtime
find	$\mathrm{O}(\mathrm{d})$
insert	$\mathrm{O}(d)$
remove	$\mathrm{O}(d)$

Tree Depth vs Size

height(left) \approx height(right)
height(left) $<$ height(right)

"Balanced" Trees

- Faster search: Want height(left) \approx height(right)
- Make it more precise: |height(left) - height(right)| ≤ 1
- (left, right height differ by at most 1)
- Question: How do we keep the tree balanced?
- Option 1: Keep left/right subtrees within +/- 1 of each other
- Add a field to track the "imbalance factor"
- Option 2: Ensure leaves are at a minimum depth of d/2
- Add a designation marking each node as red or black

Rebalancing Trees

Rebalancing Trees

Rotate(A, B)

AVL Trees

- An AVL tree (Adelson-Velsky and Landis) is a BST where every node is "depth-balanced"
- |depth(left subtree) - depth(right subtree)| < 1
- define balance(v) = height(v.right) - height(v.left)
- Maintain balance(v) $\in\{-1,0,1\}$
- balance $(\mathrm{v})=0 \rightarrow$ " v is balanced"
- balance(v) $=-1 \rightarrow$ " v is left-heavy"
- balance $(\mathrm{v})=1 \rightarrow$ " v is right-heavy"

If the balance constraint is obeyed, the tree must have $\Omega\left(2^{d}\right)$ nodes $(d=\log (n))$

Maintaining Balance

- Enforcing height-balance is too strict
- May require "unnecessary" rotations
- Weaker restriction:
- Balance the depth of EmptyTree nodes
- If a, b are EmptyTree nodes:
- depth $(a) \geq$ (depth $(b) \div 2)$
or
- depth $(\mathrm{b}) \geq(\operatorname{depth}(\mathrm{a}) \div 2)$

Balancing Empty Node Depth

Red-Black Trees

- Color each node red or black

1) \# of black nodes from each empty to root must be identical
2) Parent of a red node must be black

- On Insertion (or deletion)
- Inserted node is red (won't change \# of black nodes)
- "Repair" violations of rule 2 by rotating or recoloring
- Each repair guarantees rule 1 is preserved
- Each repair creates at most 1 new violation of rule 2 at the parent.

TreeSet[A: Ordering]

- add(a: A): Unit
o(log(n)) - Insert a into the balanced binary search tree
- apply(a: A): Boolean
o(log(n)) - Find \mathbf{a} in the binary search tree, return true if found
- remove(a: A): Unit
o(log(n)) - Remove a from the binary search tree

TreeMap[K: Ordering, V]

- put(k: K, v: V): Unit
$\mathbf{O}_{(\log (\mathbf{n}))}$ - Insert the pair (\mathbf{k}, \mathbf{v}) into the balanced binary search tree according to the ordering on \mathbf{k}.
- apply(k: K): V
$\mathrm{O}_{(\log (\mathbf{n}))}$ - Find \mathbf{k} in the binary search tree, return the matching \mathbf{v}.
- remove(k: K): Unit
$\mathrm{o}_{(\log (\mathrm{n}))}$ - Remove \mathbf{k} from the binary search tree.
- range(from: K, until: K): TreeMap[K, V]
- Return a sub-map containing only keys in the range [from, until) O(log(n)+|range|)

Hash Tables

Hash Table with Chaining

- Create an array of size N
- Pick an $\mathrm{O}(1)$ function $\mathrm{h}(\mathrm{k})$ to assign each record to $[0, \mathrm{~N})$
- A record with key k can only be stored in bucket $h(k)$
- Use linked lists if the bin is occupied

Hash Table with Chaining

Picking a Lookup Function

- Desirable Features for $h(x)$
- Fast
- needs to be O(1)
- "Unique"
- As few duplicate bins as possible

Hash Functions

- Examples
- SHA256 \leftarrow used by GIT
- MD5, BCRYPT \leftarrow used by unix login, apt
- MurmurHash3 \leftarrow used by Scala
- hash(x) is pseudorandom

1) hash(x) ~ uniform random value in [0, INT_MAX)
2) hash(x) always returns the same value
3) hash(x) uncorrelated with hash(y) for $x \neq y$

Lookup Table

- We want fewer than INT_MAX buckets
- Store a record with key k in bucket h(k) \% N

Modulus

Iterating over a hash table

- Runtime
- Visit every hash bucket
- O(N)
- Visit every element in every bucket
- O(n)
$=O(N+n)$

Hash Functions + Buckets

Everything is: $O\left(\frac{n}{N}\right) \quad$ Let's call $\alpha=\frac{n}{N}$ the load factor.

Idea: Make α a constant

Fix an $\alpha_{\max }$ and start requiring that $\alpha \leq \alpha_{\max }$

What happens when the user inserts $\mathbf{n}=\mathbf{N} \times \boldsymbol{\alpha}_{\text {max }}+1$ records ?

Rehashing

- Resize the array from $\mathrm{N}_{\text {old }}$ to $\mathrm{N}_{\text {new }}$.
- Element x moves from hash(x) \% $\mathrm{N}_{\text {old }}$ to hash(x) \% $\mathrm{N}_{\text {new }}$
- Runtime?
- Allocate new array: O(1)
- Visit every hash bucket: O(Nold)
- Hash and copy each element to the new array: O(n)
- Free the old array: O(1)
$-\mathrm{O}(1)+\mathrm{O}\left(\mathrm{N}_{\text {old }}\right)+\mathrm{O}(\mathrm{n})+\mathrm{O}(1)=\mathrm{O}\left(\mathrm{N}_{\text {old }}+\mathrm{n}\right)$

Rehashing

- Whenever $\alpha>\alpha_{\text {max }}$, rehash to double size
- Contrast with ArrayBuffer
- Starting with \underline{N} buckets, after \underline{n} insertions..
- Rehash at $\mathrm{n}_{1}=\alpha_{\max } \times \mathrm{N}$: From N to 2 N Buckets
- Rehash at $n_{2}=\alpha_{\max } \times 2 N$: From $2 N$ to $4 N$ Buckets
- Rehash at $n_{3}=\alpha_{\max } \times 4 N$: From 4N to $8 N$ Buckets
- Rehash at $\mathrm{n}_{\mathrm{j}}=\alpha_{\max } \times 2^{\mathrm{j}} \mathrm{N}$: From $2^{\mathrm{j}-1} \mathrm{~N}$ to $2^{\mathrm{j}} \mathrm{N}$ Buckets

Number of Rehashes

With n insertions...

$$
\begin{aligned}
n & =2^{j} \alpha_{\max } \\
2^{j} & =\frac{n}{\alpha_{\max }} \\
j & =\log \left(\frac{n}{\alpha_{\max }}\right) \\
j & =\log (n)-\log \left(\alpha_{\max }\right) \\
j & =O(\log (n))
\end{aligned}
$$

Total Work

Rehashes required:

$O(\log (n))$
 $O\left(2^{i} N\right)$

The i-th rehashing:
Total work after n insertions...

$$
\begin{aligned}
\sum_{i=0}^{O(\log (n))} O\left(2^{i} N\right) & =O\left(\sum_{i=0}^{O(\log (n))} 2^{i}+\sum_{i=0}^{O(\log (n))} N\right) \\
& =O\left(2^{O(\log (n)+1)}-1+O(\log (n) N)\right) \\
& =O(n+N \log (n))
\end{aligned}
$$

Work per insertion: (ammortized cost)

$$
O\left(\frac{n+N \log (n)}{n}\right)=O\left(\frac{n}{n}+\frac{N \log (n)}{n}\right)=O(1)
$$

HashSet[A]

- add(a: A): Unit
expected: O(1) worst-case: O(N)
- Compare all elements in bucket $\mathbf{h (a)} \% \mathbf{N}$ to a. If a match is not present, insert a at the head.
- apply(a: A): Boolean
expected: O(1) worst-case: $\mathrm{O}(\mathrm{N})$
- Compare all elements in bucket $\mathbf{h (a)} \% \mathbf{N}$ to \mathbf{a}. If a match is found, return true.
- remove(a: A): Unit
expected: O(1) worst-case: O(N)
- Compare all elements in bucket $\mathbf{h (a)} \% \mathbf{N}$ to \mathbf{a}. If a match is found, remove the matched element.

HashMap[K, V]

- put(k: K, v: V): Unit
expected: $O(1)$ worst-case: O(N)
- Compare the key of all elements in bucket $\mathbf{h (k)} \% \mathbf{N}$ to \mathbf{k}. If a match is present, remove it. Insert (\mathbf{k}, \mathbf{v}) at the head
- apply(k: K): V
expected: $\mathbf{O}(1)$ worst-case: $\mathrm{O}(\mathrm{N})$
- Compare the key of all elements in bucket $\mathbf{h (k)} \% \mathbf{N}$ to \mathbf{k}. If a match is found, return the corresponding value.
- remove(a: A): Unit worst-case: $\mathrm{O}(\mathrm{N})$
- Compare the key of all elements in bucket $\mathbf{h (k)} \% \mathbf{N}$ to \mathbf{k}. If a match is found, remove the matching element.
- NO range operation

Variations

- Hash Table with Chaining
- ... but re-use empty hash buckets instead of chaining
- Hash Table with Open Addressing
- Cuckoo Hashing (Double Hashing)
- ... but avoid bursty rehashing costs
- Dynamic Hashing
- ... but avoid O(N) iteration cost
- Linked Hash Table

Open Addressing

- insert(X)
- While bucket hash $(\mathrm{X})+\mathrm{i} \% \mathrm{~N}$ is occupied, $\mathrm{i}=\mathrm{i}+1$
- Insert at bucket hash(X)+i \%N
- apply(X)
- While bucket hash(X)+i $\% \mathrm{~N}$ is occupied
- If the element at bucket hash(X)+ $\mathrm{i} \% \mathrm{~N}$ is X , return it
- Otherwise $\mathrm{i}=\mathrm{i}+1$
- Element not found

Open Addressing

- Linear Probing: Offset to hash(X)+ci for some constant c
- Quadratic Probing: Offset to hash $(X)+\mathrm{ci}^{2}$ for some constant c
- Follow Probing Strategy to find the next bucket
- Runtime Costs
- Chaining: Dominated by following chain
- Open Addressing: Dominated by probing
- With a low enough $\alpha_{\max }$, operations still O(1)

Cuckoo Hashing

- Use two hash functions: hash $_{1}$, hash $_{2}$
- Each record is stored at one of the two
- insert(x)
- If both buckets are available: pick at random
- If one bucket is available: insert record there
- If neither bucket is available, pick one at random
- "Displace" the record there, move it to the other bucket
- Repeat displacement until an empty bucket is found
apply(x) and remove(x) is guaranteed $O(1)$

Linked Hash Table

- Iteration over Hash Table is $\mathrm{O}(\mathrm{N}+\mathrm{n})$
- Can be much slower than $\mathrm{O}(\mathrm{n})$
- Idea: Connect entries together in a Doubly Linked List

Linked Hash Table

Linked Hash Table

- $O(n)$ Iteration
- apply(x)
- $O(1)$ increase in cost
- insert(x)
- O(1) increase in cost
- remove(x)
- $O(1)$ increase in cost

Lossy Sets / Bloom Filters

"Lossy Sets"

- Set[A]
- add(a: A): Insert a into the set
- apply(a: A): Return true if \mathbf{a} is in the set

- What if we didn't need apply to be perfect?

Lossy Sets

- LossySet[A]
- $\operatorname{add}(\mathbf{a}: \mathbf{A}):$ Insert a into the set.
- apply(a: A):
- If a is in the set, always return true
- If \mathbf{a} is not in the set, usually return false
- Is allowed to return true, even if \mathbf{a} is not in the set

Bloom Filters

```
class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A]
{
    val bits = new Array[Boolean](_size)
    def add(a: A): Unit = {
        for(i <- 0 until _k) { bits( ithHash(a, i) % _size ) = true }
    }
    def apply(a: A): Boolean = {
        for(i <- 0 until _k) {
            if( !bits( ithHāsh(a, i) % _size ) { return false; }
        }
        return true
    }
}
```


Bloom Filter Parameters

- _size
- Intuitively: More space, fewer collisions
- _k
- Intuitively: more hash functions means...
- ...more chances for one of b's bits to be unset.
- ...more bits set $=$ higher chance of collisions.

To preserve a constant false-positive rate:
Grow _size as O(n)
Value of _k is fixed for a given size.

Bloom Filters: Analysis

- $N / n=5 \rightarrow \sim 10 \%$ collision chance
- $\mathrm{N} / \mathrm{n}=10 \rightarrow \sim 1 \%$ collision chance
- 10 bits vs
- 32 bits for one Int (3 to 1 savings)
- 64 bits for a Double/Long (6 to 1 savings)
- ~8000 bits for a full record (800 to 1 savings)

