CSE 250 Lecture 39

Final Review

Day 3

Exam Details

- Where: NSC 225
- When: 7:15 PM, Monday Dec 12
- Notes: 1 double-sided 8.5×11 "cheat sheet"
- I strongly encourage you to use less

Hash Tables

Variations

- Hash Table with Chaining
- ... but re-use empty hash buckets instead of chaining
- Hash Table with Open Addressing
- Cuckoo Hashing (Double Hashing)
- ... but avoid bursty rehashing costs
- Dynamic Hashing
- ... but avoid O(N) iteration cost
- Linked Hash Table

Open Addressing

- insert(X)
- While bucket hash $(\mathrm{X})+\mathrm{i} \% \mathrm{~N}$ is occupied, $\mathrm{i}=\mathrm{i}+1$
- Insert at bucket hash(X)+i \%N
- apply(X)
- While bucket hash(X)+i $\% \mathrm{~N}$ is occupied
- If the element at bucket hash(X)+ $\mathrm{i} \% \mathrm{~N}$ is X , return it
- Otherwise $\mathrm{i}=\mathrm{i}+1$
- Element not found

Open Addressing

- Linear Probing: Offset to hash(X)+ci for some constant c
- Quadratic Probing: Offset to hash $(X)+\mathrm{ci}^{2}$ for some constant c
- Follow Probing Strategy to find the next bucket
- Runtime Costs
- Chaining: Dominated by following chain
- Open Addressing: Dominated by probing
- With a low enough $\alpha_{\max }$, operations still O(1)

Cuckoo Hashing

- Use two hash functions: hash $_{1}$, hash $_{2}$
- Each record is stored at one of the two
- insert(x)
- If both buckets are available: pick at random
- If one bucket is available: insert record there
- If neither bucket is available, pick one at random
- "Displace" the record there, move it to the other bucket
- Repeat displacement until an empty bucket is found
apply(x) and remove(x) is guaranteed $O(1)$

Linked Hash Table

- Iteration over Hash Table is $\mathrm{O}(\mathrm{N}+\mathrm{n})$
- Can be much slower than $\mathrm{O}(\mathrm{n})$
- Idea: Connect entries together in a Doubly Linked List

Linked Hash Table

Linked Hash Table

- $O(n)$ Iteration
- apply(x)
- $O(1)$ increase in cost
- insert(x)
- O(1) increase in cost
- remove(x)
- $O(1)$ increase in cost

Lossy Sets / Bloom Filters

"Lossy Sets"

- Set[A]
- add(a: A): Insert a into the set
- apply(a: A): Return true if \mathbf{a} is in the set

- What if we didn't need apply to be perfect?

Lossy Sets

- LossySet[A]
- add(a: A): Insert a into the set.
- apply(a: A):
- If a is in the set, always return true
- If \mathbf{a} is not in the set, usually return false
- Is allowed to return true, even if \mathbf{a} is not in the set

Bloom Filters

```
class BloomFilter[A](_size: Int, _k: Int) extends LossySet[A]
{
    val bits = new Array[Boolean](_size)
    def add(a: A): Unit = {
        for(i <- 0 until _k) { bits( ithHash(a, i) % _size ) = true }
    }
    def apply(a: A): Boolean = {
        for(i <- 0 until _k) {
            if( !bits( ithHāsh(a, i) % _size ) { return false; }
        }
        return true
    }
}
```


Bloom Filter Parameters

- _size
- Intuitively: More space, fewer collisions
- _k
- Intuitively: more hash functions means...
- ...more chances for one of b's bits to be unset.
- ...more bits set $=$ higher chance of collisions.

To preserve a constant false-positive rate:
Grow _size as O(n)
Value of _k is fixed for a given size.

Aggregation, Joins

Usage Pattern 1: Aggregation

- Examples:
- "sum up __, for each \qquad
- "average \qquad , by __"
- "number of \qquad , for __"
- "biggest __, for each __"
- Pattern
- (Optionally) Group records by a "Group By" key
- For each group, compute a statistic
- e.g., sum, count, average, min, max

Usage Pattern 1: Aggregation

```
def countBy[A, K](elements: Iterable[A], getKey: A => K): Map[K, Int] =
{
    val result = mutable.Map[K, Int]()
    for(element <- elements){
        val key = getKey(element)
        if(result.contains(key)){
            result(key) += 1
        } else {
            result(key) = 1
        }
    }
    return result
}
```


Usage Pattern 2: Joins

- Examples:
- "combine these datasets"
- "look up __ for each __"
- "join __ and __ on __"
- Pattern
- For each record in one dataset...
- ... find the corresponding record(s) in the other set
- Output each pair of matched records

Usage Pattern 2: Joins

```
def nestedLoopJoin(
    sales: Seq[SaleRecord], prices: Seq[ProductPrice]
): mutable.Buffer[(SaleRecord, ProductPrice)] =
{
    val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
    for(s <- sales){
        for(p <- prices){
            if(s.productId == p.productId){
                result += ( (s, p) )
            }
        }
    }
    return result
}
```


Usage Pattern 2: Joins

```
def hashJoin(
    sales: Seq[SaleRecord], prices: Seq[ProductPrice]
): mutable.Buffer[(SaleRecord, ProductPrice)] =
{
    val indexedPrices = mutable.HashMap[Int, ProductPrice]()
    for(p <- prices){
        indexedPrices(p.productId) = p
    }
    val result = mutable.Buffer[(SaleRecord, ProductPrice)]()
    for(s <- sales){
        if(indexedPrices.contains(s.productId)){
            result += ( (s, indexedPrices(s.productId)) )
        }
    }
    return result
}
```


Memory Hierarchy

The Memory Hierarchy (simplified)

The Memory Hierarchy (simplified)

Reading an Array Entry

- Is the array entry in cache?
- Yes
- Return it (1-4 clock cycles)
- No
- Is the array entry in real memory
- Yes
- Load it into cache (10s of clock cycles)
- No
- Load it out of virtual memory (100s of clock cycles)

Fence Pointers

- Idea: Precompute the greatest key in each page in memory
- n records; 64 records/page; n/64 keys
- e.g., $n=2{ }^{20}$ records; Needs 2^{14} keys
- $2^{20} 64$ byte records $=64 \mathrm{MB}$
- $2^{14} 8$ byte records $=2^{19}$ bytes $=512 \underline{K B}$
- Call this a "Fence Pointer Table"

RAM: $\quad 2^{14}=16,384$ keys (Fence Pointer Table)

Disk: 16,384 pages (Actual Data)

Example

Binary Search: $>273, \leq 412$

Fence Pointers

- Memory Complexity:
- Need the entire fence pointer table in memory at all times
- $\mathrm{O}(\mathrm{n} / \mathrm{C})$ pages $=\mathrm{O}(\mathrm{n})$
- Steps 2, 3 load one more page
- Total: $\mathrm{O}(\mathrm{n}+1)=\mathrm{O}(\mathrm{n})$

Example

Improving on Fence Pointers

- Idea: Multiple levels of fence pointers
- Store the greatest key of each fence pointer page.
- If it fits in memory, done!
- If not, add another level

ISAM Index

+mproving-on-Fenee-Pointers
Binary Search @ Level 0 to find a Level 1 page

Binary Search @ Level 1 to find a Level 2 page

Binary Search @ Level 2 to find a Data page

Binary Search @ Data to find the record

B+ Trees

B+ Trees

- Observation: Don't need the biggest key
- Question: What if the separator value is mispositioned?
- Idea: "Steal" space from adjacent nodes
- Question: What happens when we delete records?
- Observation: The tree becomes unbalanced
- Idea: "Minimum Fill"

B+ Trees

- Insert:
- Find the page that the record belongs on
- Insert record there
- If full, "split" the page
- Insert additional separator in parent directory page
- If full, "split" the directory page and repeat with parent
- If "root split" create a new parent node

B+ Trees

- Delete:
- Find the page that the record is on
- Delete record (if present)
- If underfull, "merge" the page with a neighbor
- If either neighbor at > c/2 entries (can’t merge)
- "steal" entries from neighbor
- If parent underfull, "merge" parent with neighbor
- Repeat as needed
- If "root merge" drop lowest layer

Spatial Indexes

The 2D Map ADT

2DMap[T]

- insert(x: Int, y: Int, value: T): Unit
\bigcirc Add an element to the map at point (\mathbf{x}, \mathbf{y})
- apply(x: Int, y: Int): T

O Retrieve the element at point (x, y)

- range(xlow: Int, xhigh: Int, ylow: Int, yhigh: Int): Iterator[T]

O Retrieve all elements in the rectangle defined by ([xlow, xhigh), [ylow, yhigh))

- knn(x: Int, y: Int, k: Int)
\bigcirc Retrieve the k elements closest to the point (\mathbf{x}, \mathbf{y}) (k-nearest neighbor)

Attempt 1: Quad Trees

Possible Values:

Each Node has 4 Children

Quad Tree: Challenges

- Creating a balanced Quad Tree is hard

O Impossible to always split collection elements evenly across all four subtrees (though depth $=0(\log (\mathrm{n}))$ still possible)

- Keeping the quad tree balanced after updates is significantly harder

○ No "simple" analog for rotate left/right.

k-D Trees

Wrap-Up

TA Positions

- Did you enjoy what you learned here and want to share it with others?
- Did you hate what you learned here and think you can teach it better?
- Do you feel like you want to learn the material even better?
- Be a TA!
- email me okennedy@buffalo.edu

Research

- Using data structures to make compilers faster
- https://github.com/UBOdin/jitd-synthesis
- Interactive tools for data exploration/visualization
- https://vizierdb.info
- Collaborations w/ Materials Science, Food Systems
- Websites in progress
- Managing ambiguity, corner cases, and wackiness in data
- https://mimirdb.info

Thanks for a great semester!

