CSE 250

Data Structures

Dr. Eric Mikida
epmikida@buffalo.edu
Dr. Oliver Kennedy
okennedy@buffalo.edu

212 Capen Hall
Day 24
Heaps, Sets, Bags, and Ordered Trees

Priority Queues

Lazy - Fast Enqueue, Slow Dequeue
Proactive - Slow Enqueue, Fast Dequeue
??? - Fast(-ish) Enqueue, Fast(-ish) Dequeue

Binary Heaps

Organize our priority queue as a directed tree
Directed: A directed edge from \boldsymbol{a} to \boldsymbol{b} means that $\boldsymbol{a} \geq \boldsymbol{b}$
Binary: Max out-degree of 2 (easy to reason about)
Complete: Every "level" except the last is full (from left to right)
Balanced: TBD (basically, all leaves are roughly at the same level)
This makes it easy to encode into an array

Valid Max Heaps

Invalid Max Heaps

Heaps

What is the depth of a binary heap containing \boldsymbol{n} items?

$$
\begin{gathered}
n=O\left(\sum_{i=1}^{\ell_{\max }} 2^{i}\right)=O\left(2^{\ell_{\max }}\right) \\
\ell_{\max }=O(\log (n))
\end{gathered}
$$

The Heap ADT

enqueue (elem: A) : Unit
Place an item into the heap
dequeue: A
Remove and return the maximal element from the heap
head: A
Peek at the maximal element in the heap
length: Int
The number of elements in the heap

Heap.enqueue

Idea: Insert the element at the next available spot, then fix the heap.

1. Call the insertion point current
2. While current ! = root and current $>$ parent
a. Swap current with parent
b. Repeat with current \leftarrow parent

Heap.enqueue

 What if we enqueue 6?

Heap.enqueue

What if we enqueue 6?
Place in the next available spot

Heap.enqueue

What if we enqueue 6?
Swap with parent if it is bigger than the parent

Heap.enqueue

 What if we enqueue 6? Continue swapping upwards...

Heap. enqueue

 What if we enqueue 6?Stop swapping when we are no longer bigger than our parent

Heap . dequeue

Idea: Replace root with the last element then fix the heap

1. Start with current \leftarrow root
2. While current has a child $>$ current
a. Swap current with its largest child
b. Repeat with current \leftarrow child

Heap. dequeue

 What if we call dequeue?

Heap. dequeue

 What if we call dequeue?Remove and return the root

Heap. dequeue

 What if we call dequeue?Make the last item the new root

Heap. dequeue

 What if we call dequeue? Check for our largest child

Heap. dequeue

 What if we call dequeue?If the largest child is bigger than us, swap

Heap. dequeue

 What if we call dequeue?Continue swapping down the tree as necessary...

Heap. dequeue

 What if we call dequeue?Continue swapping down the tree as necessary...

Heap. dequeue

 What if we call dequeue?Stop swapping when our children are no longer bigger

Storing heaps

Notice that:

1. Each level has a maximum size
2. Each level grows left-to-right
3. Only the last layer grows

How can we compactly store a heap?
Idea: Use an ArrayBuffer

Storing Heaps

How can we store this heap in an array buffer?

Storing Heaps

How can we store this heap in an array buffer?

Runtime Analysis

enqueue

- Append to ArrayBuffer: amortized $O(1)$ (worst-case $O(n)$)
- fixUp: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: amortized $O(\log (n))($ worst-case $O(n))$
dequeue
- Remove end of ArrayBuffer: $O(1)$
- fixDown: $O(\log (n))$ fixes, each one costs $O(1)=O(\log (n))$
- Total: worst-case $O(\log (n))$

Priority Queues

Operation	Lazy	Proactive	Heap
enqueue	$O(1)$	$O(n)$	$O(\log (n))$
dequeue	$O(n)$	$O(1)$	$O(\log (n))$
head	$O(n)$	$O(1)$	$O(1)$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
\underline{7}, 4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

7	$\mathbf{4}$													

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4, \underline{8}, 2,5,3,9
$$

7	4	8												

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4, \underline{8}, 2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4, \underline{8}, 2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8, \underline{2}, 5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8, \underline{2}, 5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2, \underline{5}, 3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

8	5	7	2	4	3									

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

8	5	7	2	4	3	9								

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3, \underline{9}
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

9	5	8	2	4	3	7								

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

| 5 | 8 | 2 | 4 | 3 | 7 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

7	5	8	2	4	3									

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

| 5 | 7 | 2 | 4 | 3 | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

3	5	7	2	4										

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

8,9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

8,9

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

| 5 | 3 | 2 | 4 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

4	5	3	2											

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$$
5,7,8,9
$$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$3,4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$3,4,5,7,8,9$

Heap Sort

1. Insert items into heap
2. Reconstruct sequence (in reverse order) with dequeue

$$
7,4,8,2,5,3,9
$$

$2,3,4,5,7,8,9$

Heap Sort

Heap Sort

Enqueue element i: $O(\log (i))$

Heap Sort

Enqueue element i: $O(\log (i))$
Dequeue element i: $O(\log (n-i))$

Heap Sort

Enqueue element i: $O(\log (i))$
Dequeue element i: $O(\log (n-i))$

$$
\left(\sum_{i=1}^{n} O(\log (i))\right)+\left(\sum_{i=1}^{n} O(\log (n-i))\right)
$$

Heap Sort

Enqueue element i: $O(\log (i))$
Dequeue element i: $O(\log (n-i))$

$$
\left(\sum_{i=1}^{n} O(\log (i))\right)+\left(\sum_{i=1}^{n} O(\log (n-i))\right)<O(n \log (n))
$$

Updating Heap Elements

What if we want to update a value in our Heap?

Updating Heap Elements

What if we want to update a value in our Heap?
After update we can just call fixUp or fixDown based on the new value

Heap. update

What if we change the value of the 5 node to 0 ?

Heap. update

We now have to fixUp or fixDown based on the new value

Heap. update

We now have to fixup or fixDown based on the new value

Heap. update

We now have to fixup or fixDown based on the new value

Heap. update

We now have to fixup or fixDown based on the new value

Updating Heap Elements

What if we want to update a value in our Heap?
After update we can just call fixUp or fixDown based on the new value

Updating Heap Elements

What if we want to update a value in our Heap?
After update we can just call fixUp or fixDown based on the new value
Can we apply this idea to an entire array?

Heapify

Input: Array
Output: Array re-ordered to be a heap

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all \boldsymbol{n} elements in the array

Heapify

Input: Array

Output: Array re-ordered to be a heap

Idea: fixUp or fixDown all \boldsymbol{n} elements in the array
Given the cost of fixup and fixDown what do we expect the complexity Heapify will be?

Heapify

Given an arbitrary array (show as a tree here) turn it into a heap

Heapify

Start at the lowest level, and call fixDown on each node (0 swaps per node)

Heapify

Do the same at the next lowest level (at most one swap per node)

Heapify

Do the same at the next lowest level (at most one swap per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

Continue upwards (now at most 2 swaps per node)

Heapify

At level $\log (n)$: Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)

Heapify

At level $\log (n):$ Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)
At level $\log (n)-1:$ Call fixDown on all $n / 4$ nodes at this level (max 1 swaps each)

Heapify

At level $\log (n):$ Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each)
At level $\log (n)-1:$ Call fixDown on all $n / 4$ nodes at this level (max 1 swaps each)
At level $\log (n)-2:$ Call fixDown on all $n / 8$ nodes at this level (max 2 swaps each)

Heapify

At level $\log (n)$: Call fixDown on all $n / 2$ nodes at this level (max 0 swaps each) At level $\log (n)-1:$ Call fixDown on all $n / 4$ nodes at this level (max 1 swaps each) At level log(n)-2: Call fixDown on all $n / 8$ nodes at this level (max 2 swaps each)

At level 1: Call fixDown on all 1 nodes at this level ($\max \log (n)$ swaps each)

$$
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right)
$$

Heapify

Sum the number of swaps required by each level

$$
\begin{array}{r}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right)
\end{array}
$$

Pull out the n as a constant and distribute multiplication

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right)
\end{gathered}
$$

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
& O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
& O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \quad \begin{array}{l}
\text { This is known to } \\
\text { converge to a constant }
\end{array} \\
& O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)
\end{aligned}
$$

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)=O(n)
\end{gathered}
$$

$$
\begin{gathered}
O\left(\sum_{i=1}^{\log (n)} \frac{n}{2^{i}} \cdot(i+1)\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}+\frac{1}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\log (n)} \frac{i}{2^{i}}\right) \\
O\left(n \sum_{i=1}^{\infty} \frac{i}{2^{i}}\right)=O(n)
\end{gathered}
$$

Sets

A Set is an unordered collection of unique elements.
(order doesn't matter, and at most one copy of each item)

Sets

A Set is an unordered collection of unique elements.
(order doesn't matter, and at most one copy of each item key)

The mutable.Set[T] ADT

add(element: T) : Unit
Store one copy of element if not already present
apply(element: T) : Boolean
Return true if element is present in the set
remove (element: T) : Boolean
Remove element if present, or return false if not

Bags

A Bag is an unordered collection of non-unique elements.
(order doesn't matter, and multiple copies with the same key is OK)

The mutable. Bag[T] ADT

add (element: T) : Unit
Register the presence of a new (copy of) element
apply(element: T): Boolean
Return the number of copies of element in the bag
remove (element: T) : Boolean
Remove one copy of element if present, or return false if not

Collection ADTs

Propery	Seq	Set	Bag
Explicit Order	\checkmark		
Enforced Uniqueness		\checkmark	
Iterable	\checkmark	\checkmark	\checkmark

(Rooted) Trees

(Even More) Tree Terminology

Rooted, Directed Tree - Has a single root node (node with no parents)
Parent of node \mathbf{X} - A node with an out-edge to X (max 1 parent per node)
Child of node X - A node with an in-edge from X
Leaf - A node with no children
Depth of node \mathbf{X} - The number of edges in the path from the root to X
Height of node \mathbf{X} - The number of edges in the path from \mathbf{X} to the deepest leaf

(Even More) Tree Terminology

Level of a node - Depth of the node +1
Size of a tree (\boldsymbol{n}) - The number of nodes in the tree
Height/Depth of a tree (d) - Height of the root/depth of the deepest leaf

(Even More) Tree Terminology

Binary Tree - Every vertex has at most 2 children
Complete Binary Tree - All leaves are in the deepest two levels
Full Binary Tree - All leaves are at the deepest level, therefore every vertex has exactly 0 or 2 children, and $\boldsymbol{d}=\boldsymbol{\operatorname { l o g }}(\boldsymbol{n})$

Quick Scala Tips

```
class TreeNode[T](
    var _value: T,
    var _left: Option[TreeNode[T]]
    var _right: Option[TreeNode[T]]
)
class Tree[T] {
    var root: Option[TreeNode[T]] = None // empty tree
}
```

We've seen how we can use options for objects that may not exist...

Quick Scala Tips

```
trait Tree [+T]
case class TreeNode[T](
    value: T,
    left: Tree[T],
    right: Tree[T]
) extends Tree[T]
case object EmptyTree extends Tree[Nothing]
```

But we can also use Traits and case classes...

Quick Scala Tips

```
trait Tree [+T]
case class TreeNode[T](
    value: T,
    left: Tree[T],
    right: Tree[T]
) extends Tree[T]
    TreeNode and EmptyTree are two cases of Tree
case object EmptyTree extends Tree[Nothingl
```

But we can also use Traits and case classes...

Case Classes/Objects

Case Classes/Objects have two important features:

1. Inline Constructors (no new): TreeNode (10,EmptyTree,EmptyTree)
2. Match deconstructors:
foo match \{ case TreeNode (v, l, r) => ... \}

Case Classes/Objects

```
def printTree[T](root: ImmutableTree[T], indent: Int) = {
    root match {
    case TreeNode(v, left, right) =>
        print((" " * indent) + v)
    printTree(left, indent + 2)
    printTree(right, indent + 2)
    case EmptyTree =>
        /* Do Nothing */
    }
}
```


Case Classes/Objects

```
def printTree[T](root: ImmutableTree[T], indent: Int) = {
    root match {
        case TreeNode(v, left, right) =>
        print((" " * indent) + v)
        printTree(left, indent + 2)
        printTree(right, indent + 2)
        If root is a TreeNode with value v, and subtrees left and right, print \(v\), then call printTree on left and right
```

case EmptyTree =>

```
        /* Do Nothing */
    }
}
```


Case Classes/Objects

```
def printTree[T] (root: ImmutableTree[T], indent: Int) = {
    root match {
    case TreeNode(v, left, right) =>
        print((" " * indent) + v)
        printTree(left, indent + 2)
        printTree(right, indent + 2)
```

 case EmptyTree \(=>\)
 /* Do Nothing */
 If root is an EmptyTree then don't do
 anything
 \}

Computing Tree Height

The height of a tree is the height of the root

Computing Tree Height

The height of a tree is the height of the root
The children of the root are each roots of the left and right subtrees

Computing Tree Height

The height of a tree is the height of the root
The children of the root are each roots of the left and right subtrees
So we can compute height recursively:

$$
h(\text { root })= \begin{cases}0 & \text { if the tree is empty } \\ 1+\max (h(\text { root.left }), h(\text { root.right })) & \text { otherwise }\end{cases}
$$

Computing Tree Height

```
def height[T](root: Tree[T]): Int = {
    root match {
    case EmptyTree =>
        0
```

 case TreeNode (v, left, right) =>
 1 + Math.max (height(left) , height(right))
 \}

$$
h(\text { root })=\left\{\begin{array}{l}
0 \\
1+\max (h(\text { root.left }), h(\text { root.right }))
\end{array}\right.
$$

if the tree is empty otherwise

Computing Tree Height

```
def height[T](root: Tree[T]): Int = {
    root match {
    case EmptyTree =>
        0
```

Case classes have a nice mapping onto functions with multiple cases
case TreeNode (v, left, right) =>
1 + Math.max (height(left), height(right))
\}

$$
h(\text { root })=\left\{\begin{array}{l}
0 \\
1+\max (h(\text { root.left }), h(\text { root.right }))
\end{array}\right.
$$

if the tree is empty otherwise

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node \boldsymbol{X}_{L} in the left subtree of node \boldsymbol{X} : $\boldsymbol{X}_{\boldsymbol{L}} \cdot$ key $<\boldsymbol{X}$.key

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node \boldsymbol{X}_{L} in the left subtree of node $\boldsymbol{X}: \boldsymbol{X}_{L} \cdot$ key $<\boldsymbol{X}$.key
- For every node \boldsymbol{X}_{R} in the right subtree of node $\boldsymbol{X}: \boldsymbol{X}_{R}$.key $>\boldsymbol{X}$.key

Binary Search Tree

A Binary Search Tree is a Binary Tree in which each node stores a unique key, and the keys are ordered.

Constraints

- No duplicate keys
- For every node \boldsymbol{X}_{L} in the left subtree of node $\boldsymbol{X}: \boldsymbol{X}_{L} \cdot$ key $<\boldsymbol{X}$.key
- For every node $\boldsymbol{X}_{\boldsymbol{R}}$ in the right subtree of node $\boldsymbol{X}: \boldsymbol{X}_{\boldsymbol{R}} \cdot$.key $>\boldsymbol{X}$.key
X partitions its children

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root. value have key \boldsymbol{k} ? (if yes, done!)

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root. value have key \boldsymbol{k} ? (if yes, done!)
3. Is \boldsymbol{k} less than root. value's key? (if yes, search left subtree)

Finding an Item

Goal: Find an item with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (if yes, then the item is not here)
2. Does root. value have key \boldsymbol{k} ? (if yes, done!)
3. Is \boldsymbol{k} less than root. value's key? (if yes, search left subtree)
4. Is \boldsymbol{k} greater than root. value's key? (If yes, search the right subtree)

find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else
                            { return Some(v) }
    case EmptyTree =>
        return None
    }
```


find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else { return Some(v) }
    case EmptyTree =>
        return None
    }
```

What's the complexity?

find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else { return Some(v) }
    case EmptyTree =>
        return None
    }
```

What's the complexity? (how many times do we call find)?

find

```
def find[V: Ordering] (root: BST[V], target: V): Option[V] =
    root match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v )) { return find(left, target) }
        else if(Ordering[V].lt( v, target )) { return find(right, target) }
        else { return Some(v) }
    case EmptyTree =>
        return None
    }
```

What's the complexity? (how many times do we call find)? O(d)

Inserting an Item

Goal: Insert a new tem with key \boldsymbol{k} in a BST rooted at root

Inserting an Item

Goal: Insert a new tem with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)

Inserting an Item

Goal: Insert a new tem with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)
2. Does root. value have key \boldsymbol{k} ? (already present! don't insert)

Inserting an Item

Goal: Insert a new tem with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)
2. Does root. value have key \boldsymbol{k} ? (already present! don't insert)
3. Is \boldsymbol{k} less than root. value's key? (call insert on left subtree)

Inserting an Item

Goal: Insert a new tem with key \boldsymbol{k} in a BST rooted at root

1. Is root empty? (insert here)
2. Does root. value have key \boldsymbol{k} ? (already present! don't insert)
3. Is \boldsymbol{k} less than root. value's key? (call insert on left subtree)
4. Is \boldsymbol{k} greater than root.value's key? (call insert on right subtree)

insert

def insert[V: Ordering] (root: BST[V], value: V): BST[V] = node match \{
case TreeNode(v, left, right) =>
if (Ordering[V].lt(target, v)) \{
return TreeNode (v, insert(left, target), right)
\} else if(Ordering[V].lt(v, target)) \{
return TreeNode(v, left, insert(right, target))
\} else \{
return node // already present
\}
case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)
\}

insert

def insert[V: Ordering] (root: BST[V], value: V): BST[V] = node match \{
case TreeNode(v, left, right) =>
if (Ordering[V].lt(target, v)) \{
return TreeNode (v, insert(left, target), right)
\} else if(Ordering[V].lt(v , target)) \{
return TreeNode(v, left, insert(right, target))
\} else \{
return node // already present What is the complexity?
\}
(how many calls to insert)?
case EmptyTree =>
return TreeNode (value, EmptyTree, EmptyTree)
\}

insert

```
def insert[V: Ordering](root: BST[V], value: V): BST[V] =
    node match {
    case TreeNode(v, left, right) =>
        if(Ordering[V].lt( target, v ) ) {
            return TreeNode(v, insert(left, target), right)
        } else if(Ordering[V].lt( v, target ) ) {
        return TreeNode(v, left, insert(right, target))
        } else {
        return node // already present What is the complexity?
    (how many calls to insert)? O(d)
    case EmptyTree =>
        return TreeNode(value, EmptyTree, EmptyTree)
    }
```


Remove

Goal: Remove the item with key \boldsymbol{k} from a BST rooted at root

1. find the iterm
2. Replace the found node with the right subtree
3. Insert the left subtree under the right

We'll look at this in more detail later, but for now...
What's the complexity? $\mathbf{O}\left({ }^{(d)}\right.$

Sets and Bags

So we could use this specification of a BST to implement a Set What about bags? How could we change our BST to implement a Bag?

Sets and Bags

So we could use this specification of a BST to implement a Set What about bags? How could we change our BST to implement a Bag?

Idea 1: Allow multiple copies ($X_{L} \leq X$ instead of $<$)

Sets and Bags

So we could use this specification of a BST to implement a Set
What about bags? How could we change our BST to implement a Bag?
Idea 1: Allow multiple copies ($X_{L} \leq X$ instead of $<$)
Idea 2: Only store one copy of each element, but also store a count

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$

What is the runtime in terms of \boldsymbol{n} ?

BST Operations

Operation	Runtime
find	$O(d)$
insert	$O(d)$
remove	$O(d)$
What is the runtime in terms of $n ? O(n)$	

BST Operations

Operation	Runtime
find	$\boldsymbol{O}(\mathbf{d})$
insert	$\boldsymbol{O}(\mathbf{d})$
remove	$\boldsymbol{O}(\boldsymbol{d})$
What is the runtime in terms of $n ? O(n)$	
Does it need to be that bad?	

Next time...

Balancing Trees...

