






















Better throughput for read-only computations

Data safety

Replication (Multiple copies of the same data)

More space

Better throughput for writes

Sometimes better throughput for read-only computations

Partitioning (Different data at different sites

Types of Parallelism

Reading the same value from each site.

Replication

Transactions (Update A and B atomically)

Partitioning

Challenges

Parallel Data

Did a transaction commit?

In which order were the transactions applied?

What is the current value of object A?

Getting everyone to agree on something

Deterministic property (lowest IP, etc...)

Additional consensus protocol for leader selection

Pick one node as the primary

All writes go to the primary first.

Writes are replicated to the secondary(ies) if any exist.

Secondaries can handle (potentially stale) reads, but not writes

Primary is the authoritative version

Primary/Secondary (aka Leader/Follower, aka Master/Slave)

Every time something happens, everyone communicates with everyone else.

All participants signal readiness to participate in consensus

A temporary, per-consensus task ’leader’ signals all other participants to vote

All participants communicate their vote to the leader.

k-Data stability requires k replicas to acknowledge

Commit/Abort requires unanimous acknowledgement

Leader tallies votes based on goal requirements

The leader notifies everyone of the vote result.

2-Phase Commit

Sometimes possible.  Nodes log messages in an agreed-upon order.  Nodes agree to any message they receive 
in the correct, agreed-upon order.

Log Consensus

Techniques

Software/Hardware failure that causes the node to crash (although it can eventually be restarted)

The node stops functioning outright — no signs of life at all

Fail-Fast / Fail-Stop

Software/Hardware failure that causes the node to behave incorrectly

The node keeps responding, but does not respond according to the programmer’s expectations

Non-Fail-Stop

Software/Hardware failure that causes the node to behave as incorrectly as possible.

The node responds in the most harmful way possible.

Byzantine Faults

Failure Modes

The node itself

The network connecting the nodes

Part of the network connecting the nodes (partition)

What can fail?

If the node crashes, it loses its local state and has to be restarted from scratch

If the network fails… both nodes continue to be active but are unaware of each other’s existence… but may be 
aware of the existence of other nodes.

Does it matter which?

No.  If Nodes A and B are trying to reach consensus, and B stops responding, A has no clue why.

So, what happens when the failure condition ends?

Can a node tell which is which?

Failures

No Harm.  Secondary reboots and rejoins.

Secondary Node Failure

A secondary can rise to take its place… Repeat leader selection process

Primary reboots as a secondary

Primary Node Failure

From the point of view of secondaries… identical to primary node failure.

Network Failure

Recovery in Primary/Secondary Replicas

Maximize availability.  Promote secondary to primary to ensure that there’s always a primary available.

Creates risk of inconsistency, as there are now two primaries.  Two authoritative versions of the data.

Option 1: Assume Node Failure

Ensure consistency.  Wait for network (or primary node) to recover.

Affects availability.  Can’t do anything until the primary recovers.

Option 2: Assume Connection Failure

Consistency, Availability, Partition-Tolerance

Pick any 2

More precisely, pick a tradeoff between consistency and availability.  How much of each are you willing to 
sacrifice.

CAP

Partitions in Consensus

Receive Ack for write

Successfully Read an earlier value

Failure mode:

In a system with N nodes, you want to read the ‘latest’ version that everyone agrees on.

Write to N nodes, wait for everyone to acknowledge write.

Read from N nodes, wait for everyone to agree on read.

Naive:

Write to N nodes, wait for w nodes to acknowledge write

Read from N nodes, wait for r nodes to agree on read.

If w+r > N, there must be one overlapping node.  Guaranteed to be reading at least latest acked value.

Can tolerate F failures if w + r - F > N

Fault-Tolerant

Reader/Writer Stability

Consensus



Did a transaction commit?

In which order were the transactions applied?

What is the current value of object A?

Getting everyone to agree on something

Deterministic property (lowest IP, etc...)

Additional consensus protocol for leader selection

Pick one node as the primary

All writes go to the primary first.

Writes are replicated to the secondary(ies) if any exist.

Secondaries can handle (potentially stale) reads, but not writes

Primary is the authoritative version

Primary/Secondary (aka Leader/Follower, aka Master/Slave)

Every time something happens, everyone communicates with everyone else.

All participants signal readiness to participate in consensus

A temporary, per-consensus task ’leader’ signals all other participants to vote

All participants communicate their vote to the leader.

k-Data stability requires k replicas to acknowledge

Commit/Abort requires unanimous acknowledgement

Leader tallies votes based on goal requirements

The leader notifies everyone of the vote result.

2-Phase Commit

Sometimes possible.  Nodes log messages in an agreed-upon order.  Nodes agree to any message they receive 
in the correct, agreed-upon order.

Log Consensus

Techniques

Software/Hardware failure that causes the node to crash (although it can eventually be restarted)

The node stops functioning outright — no signs of life at all

Fail-Fast / Fail-Stop

Software/Hardware failure that causes the node to behave incorrectly

The node keeps responding, but does not respond according to the programmer’s expectations

Non-Fail-Stop

Software/Hardware failure that causes the node to behave as incorrectly as possible.

The node responds in the most harmful way possible.

Byzantine Faults

Failure Modes

The node itself

The network connecting the nodes

Part of the network connecting the nodes (partition)

What can fail?

If the node crashes, it loses its local state and has to be restarted from scratch

If the network fails… both nodes continue to be active but are unaware of each other’s existence… but may be 
aware of the existence of other nodes.

Does it matter which?

No.  If Nodes A and B are trying to reach consensus, and B stops responding, A has no clue why.

So, what happens when the failure condition ends?

Can a node tell which is which?

Failures

No Harm.  Secondary reboots and rejoins.

Secondary Node Failure

A secondary can rise to take its place… Repeat leader selection process

Primary reboots as a secondary

Primary Node Failure

From the point of view of secondaries… identical to primary node failure.

Network Failure

Recovery in Primary/Secondary Replicas

Maximize availability.  Promote secondary to primary to ensure that there’s always a primary available.

Creates risk of inconsistency, as there are now two primaries.  Two authoritative versions of the data.

Option 1: Assume Node Failure

Ensure consistency.  Wait for network (or primary node) to recover.

Affects availability.  Can’t do anything until the primary recovers.

Option 2: Assume Connection Failure

Consistency, Availability, Partition-Tolerance

Pick any 2

More precisely, pick a tradeoff between consistency and availability.  How much of each are you willing to 
sacrifice.

CAP

Partitions in Consensus

Receive Ack for write

Successfully Read an earlier value

Failure mode:

In a system with N nodes, you want to read the ‘latest’ version that everyone agrees on.

Write to N nodes, wait for everyone to acknowledge write.

Read from N nodes, wait for everyone to agree on read.

Naive:

Write to N nodes, wait for w nodes to acknowledge write

Read from N nodes, wait for r nodes to agree on read.

If w+r > N, there must be one overlapping node.  Guaranteed to be reading at least latest acked value.

Can tolerate F failures if w + r - F > N

Fault-Tolerant

Reader/Writer Stability

Consensus



Did a transaction commit?

In which order were the transactions applied?

What is the current value of object A?

Getting everyone to agree on something

Deterministic property (lowest IP, etc...)

Additional consensus protocol for leader selection

Pick one node as the primary

All writes go to the primary first.

Writes are replicated to the secondary(ies) if any exist.

Secondaries can handle (potentially stale) reads, but not writes

Primary is the authoritative version

Primary/Secondary (aka Leader/Follower, aka Master/Slave)

Every time something happens, everyone communicates with everyone else.

All participants signal readiness to participate in consensus

A temporary, per-consensus task ’leader’ signals all other participants to vote

All participants communicate their vote to the leader.

k-Data stability requires k replicas to acknowledge

Commit/Abort requires unanimous acknowledgement

Leader tallies votes based on goal requirements

The leader notifies everyone of the vote result.

2-Phase Commit

Sometimes possible.  Nodes log messages in an agreed-upon order.  Nodes agree to any message they receive 
in the correct, agreed-upon order.

Log Consensus

Techniques

Software/Hardware failure that causes the node to crash (although it can eventually be restarted)

The node stops functioning outright — no signs of life at all

Fail-Fast / Fail-Stop

Software/Hardware failure that causes the node to behave incorrectly

The node keeps responding, but does not respond according to the programmer’s expectations

Non-Fail-Stop

Software/Hardware failure that causes the node to behave as incorrectly as possible.

The node responds in the most harmful way possible.

Byzantine Faults

Failure Modes

The node itself

The network connecting the nodes

Part of the network connecting the nodes (partition)

What can fail?

If the node crashes, it loses its local state and has to be restarted from scratch

If the network fails… both nodes continue to be active but are unaware of each other’s existence… but may be 
aware of the existence of other nodes.

Does it matter which?

No.  If Nodes A and B are trying to reach consensus, and B stops responding, A has no clue why.

So, what happens when the failure condition ends?

Can a node tell which is which?

Failures

No Harm.  Secondary reboots and rejoins.

Secondary Node Failure

A secondary can rise to take its place… Repeat leader selection process

Primary reboots as a secondary

Primary Node Failure

From the point of view of secondaries… identical to primary node failure.

Network Failure

Recovery in Primary/Secondary Replicas

Maximize availability.  Promote secondary to primary to ensure that there’s always a primary available.

Creates risk of inconsistency, as there are now two primaries.  Two authoritative versions of the data.

Option 1: Assume Node Failure

Ensure consistency.  Wait for network (or primary node) to recover.

Affects availability.  Can’t do anything until the primary recovers.

Option 2: Assume Connection Failure

Consistency, Availability, Partition-Tolerance

Pick any 2

More precisely, pick a tradeoff between consistency and availability.  How much of each are you willing to 
sacrifice.

CAP

Partitions in Consensus

Receive Ack for write

Successfully Read an earlier value

Failure mode:

In a system with N nodes, you want to read the ‘latest’ version that everyone agrees on.

Write to N nodes, wait for everyone to acknowledge write.

Read from N nodes, wait for everyone to agree on read.

Naive:

Write to N nodes, wait for w nodes to acknowledge write

Read from N nodes, wait for r nodes to agree on read.

If w+r > N, there must be one overlapping node.  Guaranteed to be reading at least latest acked value.

Can tolerate F failures if w + r - F > N

Fault-Tolerant

Reader/Writer Stability

Consensus


