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A Mental Game

Andrew Yao. 1982. Protocols for Secure Computations
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Secure multi-party computation (MPC) allows multiple 
parties to perform a joint computation while keeping 
their sensitive data secure

This can be achieved by cryptographic protocols, 
such as Yao’s Garbled Circuits and other protocols 
based on secret-sharing schemes
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Oblivious Computation

• Computation that does not leak private 
information, directly or indirectly

• Secure multi-party computation, fully 
homomorphic encryption, virtualization, secure 
CPU, etc
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https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies/ 5



Privacy-critical Applications

• Secure auction


• Voting


• Privacy-preserving machine learning


• Statistics about sensitive information
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Writing Secure Applications
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High-level Programming Languages for MPC

• Fairplay [Malkhi et al. 2004]


• PICCO [Zhang et al. 2013]


• Obliv-C [Zahur and Evans 2015]


• ObliVM [Liu et al. 2015]


• Wysteria/Wys* [Rastogi et al. 2014, 2019]


• λobliv [Darais et al. 2020]


• Viaduct [Acay et al. 2021]


• Symphony [Sweet et al. 2023]
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A Secure Dating App
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Input: Personal Profiles
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Input: Preferences (as AST)
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Nontrivial Data
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Gap #1: Private Structured Data
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Rich Recursive Data Structures like trees
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Gap #2: Complex Policies

• Go beyond “private or not”

• Policies can be complex for structured data

• A data structure may have multiple policies

14



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

15



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

• Separating privacy policies from program logic

15



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

• Separating privacy policies from program logic

• Allow for writing applications independently of the 
policies

15



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

• Separating privacy policies from program logic

• Allow for writing applications independently of the 
policies

• Allow for specifying and auditing policies 
independently of the functionality
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Bridging The Gaps
• Rich: functional language with high-level 

abstractions, e.g., structured data, higher-order 
functions, and complex policies

• Safe: no private information is leaked throughout 
the execution

• Easy: writing secure applications as easy as 
writing standard applications
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Overview

• What are complex privacy policies?

• How to encode private data and policies? [Rich]

• How to enforce policies? [Safe]

• How to automatically enforce policies? [Easy]
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Complex Policies
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Policies for Flat Data
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Simplest Policy

21

The whole record is private



Per-Field Policy

22

Height and weight are private



Either-Or Policy
Either ID or the data is private

* Based on privacy rules from the Health Insurance Portability and Accountability Act (HIPAA)
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A policy for a data specifies what information of 
this data can be publicly shared, which can be 

an arbitrary projection of the data, called 
public view
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Encoding private data and 
policies
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An attacker is one of the participants running the 
program, so they can:


Observe the data structures themselves: need to 
obscure the shape of the data

Challenges
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Obscure Data Representation
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Public View: Maximum Depth = 2
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Oblivious Algebraic Data Types (OADT)
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Secure Integer Has Public View!
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OADTs Are “Encryption Spaces” 
Indexed By Public Views
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Enforcing Privacy Policies

42



An attacker is one of the participants running the 
program, so they can:


Observe how the data structures are used: need to 
prevent leakage through timing channel and control 
flow channel

Challenges
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A Simple Example
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Control Flow Channel
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Control Flow Channel
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Oblivious Operations
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The same idea is generalized to other oblivious 
operations for manipulating OADTs, and the 

security-type system ensures these operations 
are used securely
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Type System and Formal Guarantees

• Incorporates ideas from dependently typed 
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• Formalized the core calculus (i.e. formal model of 
the language)


• Proved type system is sound and ensures an 
obliviousness property: no private information 
can be inferred by observing the execution traces
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Certified By



So far, we are able to encode complex 
policies for structured data and implement 

private computation painstakingly
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Recall
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Entanglement of Program Logic And Policies

• Need to manually restructure the programs to capture the 
policies and make sure the control flow only depends on the 
public information

• Programs are harder to read, write and reason about

• Policies are harder to update and audit

• We may want to support multiple policies at the same time

• We may want to trade off between privacy and performance
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Entanglement of Program Logic And Policies
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Program Logic

Privacy Policies

Boilerplate



Modularity / Policy-agnosticism
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Automatically Enforcing 
Privacy Policies
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Tape Semantics: dynamically 
repairs unsafe computation
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Delay Unsafe Computation
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Can’t Leak If You Don’t Run The Program
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Propagate Surrounding Computation
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Cancel Unsafe Computation
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Cancel Unsafe Computation
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Similar ideas for other “unsafe” 
operators 
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The language and type system 
extended with this dynamic policy 

enforcement are still sound and secure!
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We Did It!
• Rich: the language (Taype) is a high-level 

functional language with supports for structured 
data and complex policies

• Safe: secure by construction by obliviousness 
theorem

• Easy: writing application logic for the secure 
computation is as easy as writing normal programs
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Case Studies
• Medical records


• Dating application


• Secure calculator


• K-means


• Private decision trees

75



Private Decision Tree Classification
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Takeaway

• By designing good abstractions, building high-
assurance systems can be made accessible with 
provable correctness and security guarantees

• Theory: sound and secure language design

• Implementation: type checker and end-to-end 
compiler
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