
Policy-Agnostic Oblivious 
Computation

Qianchuan Ye

 1



A Mental Game

Andrew Yao. 1982. Protocols for Secure Computations
2



MPC To The Rescue

3

Secure multi-party computation (MPC) allows multiple 
parties to perform a joint computation while keeping 
their sensitive data secure



MPC To The Rescue

3

Secure multi-party computation (MPC) allows multiple 
parties to perform a joint computation while keeping 
their sensitive data secure

This can be achieved by cryptographic protocols, 
such as Yao’s Garbled Circuits and other protocols 
based on secret-sharing schemes



Oblivious Computation

• Computation that does not leak private 
information, directly or indirectly

4



Oblivious Computation

• Computation that does not leak private 
information, directly or indirectly

• Secure multi-party computation, fully 
homomorphic encryption, virtualization, secure 
CPU, etc

4



https://blog.mozilla.org/en/mozilla/privacy-preserving-attribution-for-advertising/
https://www.facebook.com/business/news/our-progress-on-developing-and-incorporating-privacy-enhancing-technologies/ 5



Privacy-critical Applications

• Secure auction


• Voting


• Privacy-preserving machine learning


• Statistics about sensitive information

6



Writing Secure Applications

7



Writing Secure Applications

7



High-level Programming Languages for MPC

• Fairplay [Malkhi et al. 2004]


• PICCO [Zhang et al. 2013]


• Obliv-C [Zahur and Evans 2015]


• ObliVM [Liu et al. 2015]


• Wysteria/Wys* [Rastogi et al. 2014, 2019]


• λobliv [Darais et al. 2020]


• Viaduct [Acay et al. 2021]


• Symphony [Sweet et al. 2023]

8



A Secure Dating App

9



Input: Personal Profiles

10



Input: Preferences (as AST)

11



Nontrivial Data

12



Nontrivial Data

12



Nontrivial Data

12



Nontrivial Data

12



Gap #1: Private Structured Data

13

Rich Recursive Data Structures like trees



Gap #2: Complex Policies

14



Gap #2: Complex Policies

• Go beyond “private or not”

14



Gap #2: Complex Policies

• Go beyond “private or not”

• Policies can be complex for structured data

14



Gap #2: Complex Policies

• Go beyond “private or not”

• Policies can be complex for structured data

• A data structure may have multiple policies

14



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

15



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

• Separating privacy policies from program logic

15



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

• Separating privacy policies from program logic

• Allow for writing applications independently of the 
policies

15



Gap #3: Modularity
• Don’t want to enforce policies manually within the 

application logic

• Separating privacy policies from program logic

• Allow for writing applications independently of the 
policies

• Allow for specifying and auditing policies 
independently of the functionality

15



Bridging The Gaps

16



Bridging The Gaps
• Rich: functional language with high-level 

abstractions, e.g., structured data, higher-order 
functions, and complex policies

16



Bridging The Gaps
• Rich: functional language with high-level 

abstractions, e.g., structured data, higher-order 
functions, and complex policies

• Safe: no private information is leaked throughout 
the execution

16



Bridging The Gaps
• Rich: functional language with high-level 

abstractions, e.g., structured data, higher-order 
functions, and complex policies

• Safe: no private information is leaked throughout 
the execution

• Easy: writing secure applications as easy as 
writing standard applications

16



The Ideal

17



The Ideal

17



The Ideal

17



The Ideal

17



The Ideal

17



The Ideal

17



The Ideal

17



The Ideal

17



Overview

18



Overview

• What are complex privacy policies?

18



Overview

• What are complex privacy policies?

• How to encode private data and policies? [Rich]

18



Overview

• What are complex privacy policies?

• How to encode private data and policies? [Rich]

• How to enforce policies? [Safe]

18



Overview

• What are complex privacy policies?

• How to encode private data and policies? [Rich]

• How to enforce policies? [Safe]

• How to automatically enforce policies? [Easy]

18



Complex Policies

19



Policies for Flat Data

20



Simplest Policy

21

The whole record is private



Per-Field Policy

22

Height and weight are private



Either-Or Policy
Either ID or the data is private

* Based on privacy rules from the Health Insurance Portability and Accountability Act (HIPAA)
23



Policies for Recursive Data 

24



Policies for Recursive Data 

24



Policies for Recursive Data 

24



Policies for Recursive Data 

24



Policies for Recursive Data 

24



Policies for Recursive Data 

25



Policies for Recursive Data 

26



Policies for Recursive Data 

27



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

• Disclose maximum depth (hiding structural information, payload)

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

• Disclose maximum depth (hiding structural information, payload)

• Disclose spine upper bound (hiding partial structural information, payload)

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

• Disclose maximum depth (hiding structural information, payload)

• Disclose spine upper bound (hiding partial structural information, payload)

• Disclose spine (hiding payload)

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

• Disclose maximum depth (hiding structural information, payload)

• Disclose spine upper bound (hiding partial structural information, payload)

• Disclose spine (hiding payload)

• Disclose spine and some payload (hiding part of payload)

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

• Disclose maximum depth (hiding structural information, payload)

• Disclose spine upper bound (hiding partial structural information, payload)

• Disclose spine (hiding payload)

• Disclose spine and some payload (hiding part of payload)

• Disclose everything! (hiding nothing)

28



Policies for Recursive Data
• Impossible to hide everything! Need to disclose some information for 

bounded representation and bounded computation.

• Many possible policies (for trees):

• Disclose maximum depth (hiding structural information, payload)

• Disclose spine upper bound (hiding partial structural information, payload)

• Disclose spine (hiding payload)

• Disclose spine and some payload (hiding part of payload)

• Disclose everything! (hiding nothing)

28



A policy for a data specifies what information of 
this data can be publicly shared, which can be 

an arbitrary projection of the data, called 
public view

29



Encoding private data and 
policies

30



An attacker is one of the participants running the 
program, so they can:


Observe the data structures themselves: need to 
obscure the shape of the data

Challenges

31



An attacker is one of the participants running the 
program, so they can:


Observe the data structures themselves: need to 
obscure the shape of the data

An attacker is one of the participants running the 
program, so they can:


Observe the data structures themselves: need to 
obscure the shape of the data

Challenges

31



Obscure Data Representation

32



Public View: Maximum Depth = 2

33



Public View: Maximum Depth = 2

33



Public View: Maximum Depth = 2

34



Oblivious Algebraic Data Types (OADT)

35



Oblivious Algebraic Data Types (OADT)

35



Oblivious Algebraic Data Types (OADT)

35



Oblivious Algebraic Data Types (OADT)

35



Oblivious Algebraic Data Types (OADT)

36



Oblivious Algebraic Data Types (OADT)

36



Oblivious Algebraic Data Types (OADT)

36



Oblivious Algebraic Data Types (OADT)

36



Oblivious Algebraic Data Types (OADT)

37



An Example

38



An Example

38



An Example

38



OADTs Generalize Secure Integer

39



OADTs Generalize Secure Integer

39



OADTs Generalize Secure Integer

39



OADTs Generalize Secure Integer

39



OADTs Generalize Secure Integer

39



Secure Integer Has Public View!

40



OADTs Are “Encryption Spaces” 
Indexed By Public Views

41



Enforcing Privacy Policies

42



An attacker is one of the participants running the 
program, so they can:


Observe how the data structures are used: need to 
prevent leakage through timing channel and control 
flow channel

Challenges

43



An attacker is one of the participants running the 
program, so they can:


Observe how the data structures are used: need to 
prevent leakage through timing channel and control 
flow channel

An attacker is one of the participants running the 
program, so they can 


Observe how the data structures are used: need to 
prevent leakage through timing channel and control 
flow channel

Challenges

43



A Simple Example

44



Control Flow Channel

45



Control Flow Channel

45



Oblivious Operations

46



Oblivious Operations

46



Oblivious Operations

46



Oblivious Operations

47



Oblivious Operations

47



Oblivious Operations

47



Oblivious Operations

47



Oblivious Operations

48



The same idea is generalized to other oblivious 
operations for manipulating OADTs, and the 

security-type system ensures these operations 
are used securely

49



Type System and Formal Guarantees

50



Type System and Formal Guarantees

• Incorporates ideas from dependently typed 
languages and security-typed languages

50



Type System and Formal Guarantees

• Incorporates ideas from dependently typed 
languages and security-typed languages

• Formalized the core calculus (i.e. formal model of 
the language)

50



Type System and Formal Guarantees

• Incorporates ideas from dependently typed 
languages and security-typed languages

• Formalized the core calculus (i.e. formal model of 
the language)

• Proved type system is sound and ensures an 
obliviousness property: no private information 
can be inferred by observing the execution traces

50



Type System and Formal Guarantees

• Incorporates ideas from dependently typed 
languages and security-typed languages


• Formalized the core calculus (i.e. formal model of 
the language)


• Proved type system is sound and ensures an 
obliviousness property: no private information 
can be inferred by observing the execution traces

51



Type System and Formal Guarantees

• Incorporates ideas from dependently typed 
languages and security-typed languages


• Formalized the core calculus (i.e. formal model of 
the language)


• Proved type system is sound and ensures an 
obliviousness property: no private information 
can be inferred by observing the execution traces

51

Certified By



So far, we are able to encode complex 
policies for structured data and implement 

private computation painstakingly

52



Recall

53



You Don’t Want To Write This

54



You Don’t Want To Write This

54



Entanglement of Program Logic And Policies

55



Entanglement of Program Logic And Policies

• Need to manually restructure the programs to capture the 
policies and make sure the control flow only depends on the 
public information

55



Entanglement of Program Logic And Policies

• Need to manually restructure the programs to capture the 
policies and make sure the control flow only depends on the 
public information

• Programs are harder to read, write and reason about

55



Entanglement of Program Logic And Policies

• Need to manually restructure the programs to capture the 
policies and make sure the control flow only depends on the 
public information

• Programs are harder to read, write and reason about

• Policies are harder to update and audit

55



Entanglement of Program Logic And Policies

• Need to manually restructure the programs to capture the 
policies and make sure the control flow only depends on the 
public information

• Programs are harder to read, write and reason about

• Policies are harder to update and audit

• We may want to support multiple policies at the same time

55



Entanglement of Program Logic And Policies

• Need to manually restructure the programs to capture the 
policies and make sure the control flow only depends on the 
public information

• Programs are harder to read, write and reason about

• Policies are harder to update and audit

• We may want to support multiple policies at the same time

• We may want to trade off between privacy and performance

55



Entanglement of Program Logic And Policies

56

Program Logic

Privacy Policies

Boilerplate



Modularity / Policy-agnosticism

57



Automatically Enforcing 
Privacy Policies

58



You Want To Write This

59



You Want To Write This

60



You Want To Write This

60



A Good First Step

61



A Good First Step

61



A Good First Step

61



A Good First Step

61



A Good First Step

61



A Good First Step

61



A Good First Step

61



A Good First Step

61



A Good First Step

62



Tape Semantics: dynamically 
repairs unsafe computation

63



An “Unsafe” Operation

64



An “Unsafe” Operation

64



An “Unsafe” Operation

64



An “Unsafe” Operation

64



An “Unsafe” Operation

64



An Example

65



An Example

65



Delay Unsafe Computation

66



Can’t Leak If You Don’t Run The Program

67



Propagate Surrounding Computation

68



Propagate Surrounding Computation

68



Propagate Surrounding Computation

68



Propagate Surrounding Computation

68



Propagate Surrounding Computation

68



Cancel Unsafe Computation

69



Cancel Unsafe Computation

69



Similar ideas for other “unsafe” 
operators 

70



The language and type system 
extended with this dynamic policy 

enforcement are still sound and secure!

71



Modular Implementation

72



Modular Implementation

72



Modular Implementation

73



We Did It!

74



We Did It!
• Rich: the language (Taype) is a high-level 

functional language with supports for structured 
data and complex policies

74



We Did It!
• Rich: the language (Taype) is a high-level 

functional language with supports for structured 
data and complex policies

• Safe: secure by construction by obliviousness 
theorem

74



We Did It!
• Rich: the language (Taype) is a high-level 

functional language with supports for structured 
data and complex policies

• Safe: secure by construction by obliviousness 
theorem

• Easy: writing application logic for the secure 
computation is as easy as writing normal programs

74



Case Studies
• Medical records


• Dating application


• Secure calculator


• K-means


• Private decision trees

75



Private Decision Tree Classification

76



Private Decision Tree Classification

76



Private Decision Tree Classification

76



Takeaway

77



Takeaway

• By designing good abstractions, building high-
assurance systems can be made accessible with 
provable correctness and security guarantees

77



Takeaway

• By designing good abstractions, building high-
assurance systems can be made accessible with 
provable correctness and security guarantees

• Theory: sound and secure language design

77



Takeaway

• By designing good abstractions, building high-
assurance systems can be made accessible with 
provable correctness and security guarantees

• Theory: sound and secure language design

• Implementation: type checker and end-to-end 
compiler

77


