
Binary search to first record, scan to last record

Makes it possible to filter for 'age' = _ / age > _ / age < _ / _ < age < _

Sort Data by 'Age'

Makes it easier to jump to records if you don't have fixed-size records

Works well with Cache Lines / SSD Pages / HDD Pages

We discussed a few layout strategies

Store Data in Chunks Pages

Still need to binary search within a page

Binary Search: log_2 N

w/ Index Pages: log_k N (where k is the number of "keys" on a page)

Quick analysis: How many pages will get loaded in a binary search?

Summaries Index Pages allow you to load fewer pages when doing a binary search

Recap

Can't handle multiple attributes?

Challenges

Can support multiple attributes

"Easy" to implement

Pros

Tons of space wasted

Updates: Have to keep multiple pages in sync

Cons

(Naive) Idea 1: Store multiple copies of the index

Can support some queries for multiple attributes

Can simultaneously filter on multiple attributes

Pros

Can only support some queries for multiple attributes

Cons

Idea 2: Sort on Tuples of attributes (e.g., <Age, Rank> or <Rank, Age>)

Instead of <key, rest of record> pages, store <key, page # with full record>

Supports multiple attributes with relatively few caveats

Minimal space overhead

Pros

Idea 3: Add a layer of indirection

Primary vs Secondary Indexes

Minimal update overheads... but...

Still need to binary search through the target page

Makes it hard to do reorganization... the target record is locked to that one page

Cons

Typically called a "Secondary" Index

Instead, use: <search key, record key> (call it a Primary Key)

Typically called a "Primary" or "Clustered" Index

Have a separate index that maps record key to record

Supports multiple attributes with almost no caveats

Minimal space overhead

Virtually no update overhead

Pros

If we're clever we can often cut this down to just a flat additional log_k(N) cost (Add log_k(N) to cost). How?

This trick also helps us make accesses sequential (good for HDDs)

Adds a log_k(N) lookup factor (Multiply cost by log_k(N))

Cons

The same trick can be used to help us satisfy multiple queries on secondary keys

Observation (Time Permitting): Multiple Secondary Keys

Idea 4: Primary Keys

Can’t insert into the middle of a sorted file

Can’t insert into a packed (sorted) summary page

Challenges

Bonus: Don’t need fixed-size records

Treat pages as atomic blobs of storage (rather than a single contiguous region)

Leave empty space on each data page and each summary (tree) page

Shift records to/from other pages at the same level (pivot)

Merge two pages together

Create a new level / flatten a level

What to do when a page “fills up” or “empties out”?

Super-tall structure

Degenerate case:

Idea 1: Out-of-order pages (B+Tree-Ish Indexes)

Invariant 1: Uniform Tree Depth

Invariant 2: 50% ≤ fill ≤ 100% (for all except root page)

Idea 2: As above, but maintain size invariant (B+Tree)

Handling Changing Data

Recur higher if necessary

When page drops below 50% fill, merge with adjacent page

Recur higher if necessary

When page exceeds 100% fill, split into 2 pages

When root drops to 1 pointer, reduce depth by 1

When root exceeds capacity, increase depth by 1

Optimization: Borrow/Loan records/[key+pointer]s from/to adjacent pages

Balanced, so worst case == common case

Fill = at worst 1/2, so the tree is half-unused (i.e., we have space for 2N records, but are only using N)

log_k(2N) = log_k(2) + log_k(N) ~= at worst 1 more level of tree than we really need

log_k(2N) vs log_k(N) best case

Analysis:

Every insert triggers a split

Every delete triggers a merge

Alternating Insertions / Deletions occuring on a 50%/100% boundary:

Doesn't happen very often...

Borrow/Loan help prevent this

Other ideas: Background task to continuously rebalance tree away from dangerous split/merge thresholds

Worst case behavior

