v Recap
v Sort Data by 'Age'

v Makes it possible to filter for 'age' = _/age>_/age<_/_<age<_

e Binary search to first record, scan to last record

v Store Data in Ghurks Pages
¢ Makes it easier to jump to records if you don't have fixed-size records
e Works well with Cache Lines / SSD Pages / HDD Pages

e We discussed a few layout strategies

v Sumrraries Index Pages allow you to load fewer pages when doing a binary search
¢ Still need to binary search within a page
v Quick analysis: How many pages will get loaded in a binary search?
e Binary Search: log_2 N

* w/ Index Pages: log_k N (where k is the number of "keys" on a page)

* Primary vs Secondary Indexes

v Challenges

e Can't handle multiple attributes?

v (Naive) Idea 1: Store multiple copies of the index
v Pros
e Can support multiple attributes
e "Easy" to implement
v Cons
e Tons of space wasted

e Updates: Have to keep multiple pages in sync

v Idea 2: Sort on Tuples of attributes (e.g., <Age, Rank> or <Rank, Age>)
v Pros
e Can support some queries for multiple attributes
e Can simultaneously filter on multiple attributes
v Cons

e Can only support some queries for multiple attributes
v Idea 3: Add a layer of indirection
¢ Instead of <key, rest of record> pages, store <key, page # with full record>
v Pros

e Supports multiple attributes with relatively few caveats

e Minimal space overhead



e Minimal update overheads... but...
v Cons
e Still need to binary search through the target page

e Makes it hard to do reorganization... the target record is locked to that one page

v Idea 4: Primary Keys
v Instead, use: <search key, record key> (call it a Primary Key)
e Typically called a "Secondary" Index
v Have a separate index that maps record key to record
e Typically called a "Primary" or "Clustered" Index
v Pros
e Supports multiple attributes with almost no caveats
e Minimal space overhead
e \Virtually no update overhead
v Cons
v Adds a log_k(N) lookup factor (Multiply cost by log_k(N))
e |f we're clever we can often cut this down to just a flat additional log_k(N) cost (Add log_k(N) to cost). How?
e This trick also helps us make accesses sequential (good for HDDs)
v Observation (Time Permitting): Multiple Secondary Keys

e The same trick can be used to help us satisfy multiple queries on secondary keys

v Handling Changing Data

v Challenges
¢ Can’tinsert into the middle of a sorted file

e Can’tinsert into a packed (sorted) summary page

v Idea 1: Out-of-order pages (B+Tree-Ish Indexes)

v Treat pages as atomic blobs of storage (rather than a single contiguous region)
e Bonus: Don’t need fixed-size records

e Leave empty space on each data page and each summary (tree) page

v What to do when a page “fills up” or “empties out”?
e Shift records to/from other pages at the same level (pivot)
e Merge two pages together
e Create a new level / flatten a level

v Degenerate case:

e Super-tall structure

v Idea 2: As above, but maintain size invariant (B+Tree)
¢ |nvariant 1: Uniform Tree Depth

e Invariant 2: 50% < fill = 100% (for all except root page)



When page drops below 50% fill, merge with adjacent page
e Recur higher if necessary
When page exceeds 100% fill, split into 2 pages
e Recur higher if necessary
When root drops to 1 pointer, reduce depth by 1
When root exceeds capacity, increase depth by 1
Optimization: Borrow/Loan records/[key+pointer]s from/to adjacent pages
Analysis:
¢ Balanced, so worst case == common case
e Fill = at worst 1/2, so the tree is half-unused (i.e., we have space for 2N records, but are only using N)
v log_k(2N) vs log_k(N) best case
e log_k(2N) = log_k(2) + log_k(N) ~= at worst 1 more level of tree than we really need
Worst case behavior
v Alternating Insertions / Deletions occuring on a 50%/100% boundary:
e Every insert triggers a split
e FEvery delete triggers a merge
e Doesn't happen very often...
e Borrow/Loan help prevent this

e Other ideas: Background task to continuously rebalance tree away from dangerous split/merge thresholds



